derive variational formulation
Find \( \sigma \in V, \, \sigma_n = g \, on \, \Gamma_N, \, u \in Q \)
\( \int_{\Omega} (a^{-1}\sigma)\cdot\tau \mathrm{dx} + \int_{\Omega} \mathrm{div}\tau u \mathrm{dx} = \int_{\Gamma_D}u_D \tau_n \mathrm{ds}, \, \forall \tau , \tau_n=0 \, on \, \Gamma_N\)
\( \int_{\Omega} \mathrm{div}\sigma v \mathrm{dx} = - \int_{\Omega}fv \mathrm{dx}, \, \forall v \)