Please enable JavaScript.
Coggle requires JavaScript to display documents.
hyperbolic PDEs (Ch10) (
hyperbolic PDEs (Ch10)
2nd order time derivatives w/ 2 ICs
Hyperbolic conservation laws (Supp)
Theory (Ch1)
Expansion fans(Ch1.2)
pick the meaningful physical solution
Ex: Burgers'
Entropy solutions
Viscosity solutions \( \lim_{\epsilon \rightarrow 0}u^{\epsilon} \)
\( u^{\epsilon}_t+f(u^{\epsilon})_x -\epsilon u^{\epsilon}_{xx}=0\)
weak solutions
& Rankine-Hugoniot relation (Ch1.1)
weak solution in space-time
shock=
intersection of characteristic lines
speed = RH-relation \( s' \)
\( s'=\frac{f(u_l)-f(u_r)}{u_l-u_r} \)
position \( s(t) \)
Ex: Burgers'
\( s'=\frac{u_l+u_r}{2} \)
Intro (Ch0)
Examples
Burgers' eq
\( f(u) = \frac{1}{2} u^2 \)
Transport eq.
Euler eq.
Wave eq.
Setup
\( \frac{\partial u}{\partial t}+ \textrm{div}\, f(u)=0 \)
Numerical Methods (Ch2)
entropy-viscosity methods
Galerkin methods
(=natural ones)
Discontinuous
finite volume
space-time methods
up-wind like fluxes
space-discretization \( \Rightarrow \) 2nd order ODE
reduction to 1st order system of ODEs
introduce \( v=u' \)
Time integration methods for 1st order can be applied
examples: waves