Please enable JavaScript.
Coggle requires JavaScript to display documents.
Applications (Ch8) (Maxwell eq (Ch8.3) (setup in \( \mathbb{R} \) (current…
Elasticity (Ch8.2)
in more dimensions
\( -\mathrm{div\,}D\epsilon(u)=f \)
eq. of elasticity in weak form
\( u \in V= [H^1_{0,D}(\Omega)]^d\)
\( \int_{\Omega} D\epsilon(u):\epsilon(v)\mathrm{\, dx}=\int_{\Omega}f\cdot v\mathrm{\, dx},\, \forall v \in V \)
-
-
-
-
-
-
-
Navier Stokes eq. (Ch8.1)
\( -\nu\Delta u + \rho(u\cdot\nabla)u-\nabla p = f \)
\( \mathrm{div\,}u=0 \)
-
-
variables
velocity \( u=(u_x, u_y, u_z) \)
-
-
-
-
-
-
-
-
-
Maxwell eq (Ch8.3)
\( H(\mathrm{curl})= \{v \in [L_2(\Omega)]^3:\mathrm{curl\,}v\in [L_2(\Omega)]^3\}\)
\( \Vert v \Vert_{H(\mathrm{curl})}= \sqrt{ \Vert v \Vert_{L_2}^2+ \Vert \mathrm{curl\,}v \Vert_{L_2}^2}\)
-
Trace theorem (Th106)
\( \exists \) tangential trace operator \( \mathrm{tr}_{\tau} v : H(\mathrm{curl}) \rightarrow W(\partial\Omega),\,\mathrm{tr}_{\tau} v=(v\vert_{\partial\Omega})_{\tau}\)
for \( v\in [C(\overline{\Omega})]^3 \)
-
-
-
kernel space \( H^0(\mathrm{curl})=\{ v\in H(\mathrm{curl}): \mathrm{curl\,}v=0 \} \)
-
-
\( u \in H(\mathrm{curl},\Omega=\cup\Omega_i) \) (Th107)