Elasticity (Ch8.2)

Navier Stokes eq. (Ch8.1)
νΔu+ρ(u)up=f
divu=0

Maxwell eq (Ch8.3)

in more dimensions
\( -\mathrm{div\,}D\epsilon(u)=f \)

structural mechanics

setup in 1D
\( -(Eu')'=f \)

proving LBB for Stokes eq. (Supp)

non-linear

variables

types

finite elements

\( H(\mathrm{curl})= \{v \in [L_2(\Omega)]^3:\mathrm{curl\,}v\in [L_2(\Omega)]^3\}\)
\( \Vert v \Vert_{H(\mathrm{curl})}= \sqrt{ \Vert v \Vert_{L_2}^2+ \Vert \mathrm{curl\,}v \Vert_{L_2}^2}\)

Finite elements in \( H(\mathrm{curl}) \)

Navier Stokes: Modeling & first numerical methods (Supp)

Trace theorem (Th106)
\( \exists \) tangential trace operator \( \mathrm{tr}_{\tau} v : H(\mathrm{curl}) \rightarrow W(\partial\Omega),\,\mathrm{tr}_{\tau} v=(v\vert_{\partial\Omega})_{\tau}\)
for \( v\in [C(\overline{\Omega})]^3 \)

setup in \( \mathbb{R} \)

gradient operator \( \nabla:H^1 \rightarrow H(\mathrm{curl}) \)

de'Rham complex
complete sequences of spaces

kernel space \( H^0(\mathrm{curl})=\{ v\in H(\mathrm{curl}): \mathrm{curl\,}v=0 \} \)

weak form through Coloumb-Gauging

Oseen iteration/eq.

mixed system is well posed on \( H(\mathrm{curl})\times H^1/\mathbb{R} \)

in general: no unique solution

\( u \in H(\mathrm{curl},\Omega=\cup\Omega_i) \) (Th107)

eq. of elasticity in weak form
\( u \in V= [H^1_{0,D}(\Omega)]^d\)
\( \int_{\Omega} D\epsilon(u):\epsilon(v)\mathrm{\, dx}=\int_{\Omega}f\cdot v\mathrm{\, dx},\, \forall v \in V \)

rigid body motions (=translation or linearized rotation)

discretization is straight forward

weak form well posed in \( [H^1]^d \) (Th103)

problem: sim results on thin structures worse

semi discretizationgoal: derive system of 1D eq. for 2D deformation w/ semi-discretization

Discrete LBB (Ch2)

trafo of 1D setup

flow of a fluid

BC

approx. by Galerkin

stationary = steady state (no change in \(t\))

spaces for convergence

stability of cont. eq (Ch1)

Example sim: Timoshenko beam

proving discrete-LBB w/ Fortin operator

force density \( f \)

strain \( \epsilon = u'\)

2nd order eq. for displacement \( u \)

incompressible fluids

Hooks Law \( \sigma = E \epsilon \)

simplest elements not work (LBB not fulfilled)

velocity \( u=(u_x, u_y, u_z) \)

current density \( j \)

pressure \( p\)

model forces \( f\)

density \( \rho \)

tetrahedral

error of same order as approx. err

\( W_h\overset{\nabla}{\longrightarrow}V_h\overset{\textrm{curl}}{\longrightarrow}Q_h\overset{\textrm{div}}{\longrightarrow}S_h \) (Th110)

\( H^{1}\overset{\nabla}{\longrightarrow}H(\textrm{curl})\overset{\textrm{curl}}{\longrightarrow}H(\textrm{div})\overset{\textrm{div}}{\longrightarrow}L^{2} \)

stress \( \sigma' = -f\)

Henrys Law + Stokes

electromagnetic fields

permeability \( \mu \)

cheaper Nedelec / edge-element

var. problem: mixed form

magnetic field intensity \( H \)

BC

Lagrangian vs. Eulerian (Ch1)

system of eq.s

w/ Brezzi and conditions \( \Rightarrow \) unique solution

The N-S.eq (Ch2)

viscosity \( \nu \)

magnetic flux \( B\)

finite elements in 3D

basis function \( \varphi_{E_i}\)

vertical displacement \( w(x) \)

in principle well posed (Le104)

1st FEM discretization & time stepping (Ch3)

Elements w/ discont. pressure (Ch2.1)

de'Rham complex diagram commutes (Th111)

\( \mathrm{curl}=\mathrm{rot}=\nabla\times\)

compare to diffusion eq.

lin. rotation of normal vector \( \beta \)

small thickness
\( \Rightarrow \) large cont./coerc. ratio
\( \Rightarrow \) error increase

piece-wise constant for \( p \)

Elements w/ cont. pressure (Ch2.2)

Dirichlet (displacement at boundary)

stokes eq. = N-S-eq - viscos. & density terms

inflow \( \Gamma_i \) and outflow boundaries \( \Gamma_o \)

solvability by Brezzi

variables

Langrangian

Reynolds transport Theorem (Th1)

average longitudinal displacing \( U(x) \)

unknown vars

new var. form

Neumann (stress at boundary )

non-conf. \( P_1 \) for \( u \)

\( \Rightarrow \) 2 decoupled problems

\( V_h = P^{1,nc}, \, Q_h = P^{0,dc} \)

solution = pairing
\( V_h = P^{2+}, \, Q_h = P^{1,nc} \)

basis: conservation eq.s (e.g. mass)

mixed method

Eulerian

conserved quants.

implicit + explicit Euler method (mixture used)

extended Brezzi (Th105)

\( V_h = P^{2}, \, Q_h = P^{0,dc} \)

Fortin operator (preserving mean values)

goal: rewrite terms to solve per time step

idea: weaken term w/ large coefficient

\( O(h) \) convergent

space-discretized system

Proof1: ignore Dirichlet and use extension operator

Proof2: on star shaped \( \Omega \)

clement operator

\( \Omega \in \mathbb{R} \)

position \( x \in \Omega \)

mini element \( V_h = P^{1+}, \, Q_h = P^{1,cont} \)

Alternative: Taylor-Hood element

\( \frac{d}{dt}\int_{V(t)} c(x,t)\mathrm{\,dx}= \int_{V(t)} \frac{\partial c}{\partial t}(x,t)\mathrm{\,dx}+ \int_{\partial V(t)} n\cdot uc\mathrm{\,ds} \)

Interpretation

solids

particle \( X \in \Omega\)

velocity of particle \( u(x,t) \)

LBB-cond. non-trivial

correction operator

quantity preserved

Fortin operator

evolution of particles \( \varphi : \Omega\times [0,T] \rightarrow \Omega \)

material derivative
\( \frac{Dc}{Dt} := \frac{\partial c}{\partial t} + \mathrm{div\,}(uc) \)

2nd order space w/ cubic bubbles
\( P^{2+}(\mathcal{T})=\{ v_h \in H^1:v_{h\vert T}\in P^3(T),v_{h\vert E} \in P^2(E) \} \)

vector valued velocity field \( u \)

error-estimate

2nd order convergence

\( x \) variables

scalar-valued pressure field \( p \)

momentum

fluids

Fortin + Clement operator

coordinates \( X \)

1st order convergence

error-estimates

requires add. assumptions

cost low for add. bubbles

stable pair \( P^2 \times P^{1,cont} \)

convergence rate \( O(h) \) optimal

mass

correction operator

conv. rate \( O(h^2) \)

this element sub-optimal

longitdunial displacement

bending & shearing