Coggle requires JavaScript to display documents.
Linear eq. Solvers (Ch6)
lin. system of eq (P69) (Ch6.0)
Preconditioning (Ch6.3)
iterative eq. solvers (Ch6.2)
direct lin. eq. solvers (Ch6.1)
Examples
Overlapping domain decomposition (ODD)
conjugate gradient method (P79)
Richardson iteration (aka simple- or Picard-iteration) (P73)
Basics
large dim & sparse matrices
Block-Jacobi (P84)block-diagonal of A
Chebyshev (iteration) method (P77)
Additive Schwarz (P86)overlapping block jacobi # generalization
block-elimination methods
gradient method (P77) #modification
Jacobi (P82)\( C=\mathrm{diag} \, A \)
general
2D-Dirichlet on square
...w/ coarse grid correction (P90)
1D-Dirichlet on interval
compute an \( A\)-orthogonal (=conjugate) basis of the Krylov space \( \mathcal{K}_k(d_0) \)
Algo
algorithm fulfills (Th77)
convergence rate (Th78)
algo: \( u^{k+1}=u^k+\tau C^{-1}(f-Au^k) \)
preconditioning action \( \sum_{i=1}^M E_i ( E_i^T A E_i )^{-1} E_i^T \underline{d} \)
\( M \) can be bound in \( A \)- and \( C \)-norm (Le75)
Goal: construct \( C \) that
error in energy norm
quadratic form \( \underline{u}^T C \underline{u} = \sum_{i=1}^M \Vert GE_i \underline{u}_i \Vert^2_A\)
rectangular embedding matrices \( E_i \in \mathbb{R}^{N \times N_i}, \, i=1,...,M \)\( \Rightarrow \) unique representation \( \underline{u}=\sum^M_{i=1} E_i \underline{u}_i \)
local (P89)
terminates at finite number of steps (Re76)
Galerkin Isomorphism \( G:\mathbb{R}^N \rightarrow V_h : \underline{u} \rightarrow u = \sum u_i \varphi_i \)with dual \( G^*:V_h^* \rightarrow \mathbb{R}^N : d(\cdot ) \rightarrow (d( \varphi_i))_{i=1,...N} \)
finite element spaces \( V_l \)
comparable to band factorization
goal:solve finite element system on \(V_L=V_h \subset H^1 \)
simple analysis (Le1)\( \frac{1}{L}C \preceq A \preceq LC \)
use finite element spaces \( V_0 \subset V_1 \subset ... \subset V_L \)on (hierarchy of) coarser meshes \( \mathcal{T}_0,\mathcal{T}_1,...,\mathcal{T}_L \)
\( m \) iterations \( \Rightarrow \) overall convergence better w/ variable \( \tau_1,...,\tau_m \)
eval. of quadratic form\( \underline{u}^T A \underline{u} = A(G\underline{u},G\underline{u}) \simeq \Vert G \underline{u} \Vert^2_{H^1} \)
Example on unit interval
Additive Schwarz Lemma = useful representation in quadr. form (Le80)\( \underline{u}^T C \underline{u} = \inf_{\underline{u}_i \in \mathbb{R}^{N_i}}\sum_{i=1}^M \underline{u}_i^T A_i \underline{u}_i\)with \( A_i = E_i^T A E_i \)
precond. action same as in Block-Jacobi
block factorization & sub structuring algos
LU-decomposition
optimization of \( \tau \) solved by chebyshev plynomials
preconditioning action \( \sum_{i=1}^N e_i ( e_i^T A e_i )^{-1}e_i^T \underline{d} \)
result
FE space by sub-space splitting\( V=\sum_{i=1}^M V_i, V_i=GE_i\mathbb{R}^{N_i}\subset V_h \)
quadratic form \( \underline{u}^T C \underline{u} = \sum_{i=1}^N u_i^2 \Vert \varphi_i \Vert^2_A\)
\( C=C_L\)
Cholesky factorization
Add. Schwarz Lemma in finite element framework (= \( V_i, P_i, \widehat{u}\),...) (Le82)\( \underline{u}^T C \underline{u} = \inf_{u_i \in V_i} \sum_{i=1}^M \Vert u_i \Vert_A^2 \)
find automatically optimal \( \tau \) ,by minimum in convex function per step
prolongation matrix \( E_H \)restriction matrix \( E_H^T \)
original method not good choice
add one more sub spaces
optimal number of subdomains \( M=N^{\frac{\alpha}{2\alpha -1}} \)
asymptotic cost \( N^{\frac{\alpha^2}{2\alpha -1}} \)+ Ex
problem: local ODD worse when number of sub-domains increase
preconditioning action \( \sum_{i=1} E_i ( E_i^T A E_i )^{-1} E_i^T \underline{d} + E_H ( E_H^T A E_H )^{-1} E_H^T \underline{d} \)
improved estimate (Le2)=fulfills optimal spectral bounds
iteration matrix \( M=I-\tau C^{-1}A \),with \( u^{k+1}-u = M(u^k - u) \)
optimal number of sub-domains
convergence rate estimated by Richardson iteration
preconditioner matrix \( C \)
Decomposition of \( \Omega=\cup_{I=1}^M \Omega_i\) with
can't be calculated \( \Rightarrow \) approx \( d^T_k C^{-1} d_k \)
in the limit , if \( H \simeq h\) it is comparable to Jacobi-precond.
min-mesh size \( h \) of a shape-regular triang.(Th79)\( \Rightarrow h^2 \underline{u}^T C \underline{u} \preceq u^T A u \preceq u^T C u \)
graphical Ex (P91)
\( \Rightarrow \) (not necessarily) unique representation \( \underline{u}=\sum^M_{i=1} E_i \underline{u}_i \)
better than general
band matrix -> faster
it fulfills optimal spectral estimates (Th84)\( \underline{u}^T C \underline{u} \preceq \underline{u}^T A \underline{u} \preceq \underline{u}^T C \underline{u} \)
(optimal) damping \( \tau \)
3D worse
recursively
leading to optimal condition number \( \kappa(C^{-1}A)\preceq 1\) independent of \( L \)
know a priori \( N_{its} \)
goal: reduction by factor \( \epsilon \)
ODD precond. fulfills spectral estimates (Le83)\( H^2 \underline{u}^T C \underline{u} \preceq \underline{u}^T A \underline{u} \preceq \underline{u}^T C \underline{u} \)
not numerically stable
intuitive explanation (P4)
2D very efficient
computation complexity of \( C_L^{-1}\) is \( O(N)\)
\( C \preceq A \preceq C \)