Please enable JavaScript.
Coggle requires JavaScript to display documents.
Linear eq. Solvers (Ch6) (Preconditioning (Ch6.3) (
-
Preconditioning (Ch6.3)
-
Basics
Goal: construct \( C \) that
- precond. action \( w=C^{-1} \times d \) efficiently computable
- estimate spectral bounds
Galerkin Isomorphism \( G:\mathbb{R}^N \rightarrow V_h : \underline{u} \rightarrow u = \sum u_i \varphi_i \)
with dual \( G^*:V_h^* \rightarrow \mathbb{R}^N : d(\cdot ) \rightarrow (d( \varphi_i))_{i=1,...N} \)
eval. of quadratic form
\( \underline{u}^T A \underline{u} = A(G\underline{u},G\underline{u}) \simeq \Vert G \underline{u} \Vert^2_{H^1} \)
finite element spaces \( V_l \)
- \( h_l \simeq 2^{-l} \)
- \( N_l = \mathrm{dim}(V_l) \)
- \( \{ \varphi_{l,i}:1 \leq i \leq N_l \}\)hat basis
- \( A_l \) FE matrix
-
-
use finite element spaces \( V_0 \subset V_1 \subset ... \subset V_L \)
on (hierarchy of) coarser meshes \( \mathcal{T}_0,\mathcal{T}_1,...,\mathcal{T}_L \)
\( C=C_L\)
recursively
- \( C_0^{-1}:= A_0^{-1}\)
- \( C_l^{-1}:=(\mathrm{diag}\,A_l)^{-1} + E_l C_{l-1}^{-1}E_l^T\)
-
-
-
Additive Schwarz (P86)
overlapping block jacobi # generalization
Additive Schwarz Lemma = useful representation in quadr. form (Le80)
\( \underline{u}^T C \underline{u} = \inf_{\underline{u}_i \in \mathbb{R}^{N_i}}\sum_{i=1}^M \underline{u}_i^T A_i \underline{u}_i\)
with \( A_i = E_i^T A E_i \)
-
FE space by sub-space splitting
\( V=\sum_{i=1}^M V_i, V_i=GE_i\mathbb{R}^{N_i}\subset V_h \)
Add. Schwarz Lemma in finite element framework (= \( V_i, P_i, \widehat{u}\),...) (Le82)
\( \underline{u}^T C \underline{u} = \inf_{u_i \in V_i} \sum_{i=1}^M \Vert u_i \Vert_A^2 \)
-
\( \Rightarrow \) (not necessarily) unique representation \( \underline{u}=\sum^M_{i=1} E_i \underline{u}_i \)
Jacobi (P82)
\( C=\mathrm{diag} \, A \)
-
-
min-mesh size \( h \) of a shape-regular triang.(Th79)
\( \Rightarrow h^2 \underline{u}^T C \underline{u} \preceq u^T A u \preceq u^T C u \)
-
-