Basics (Ch3.1)

Equivalent norms on H1 & sub-spaces (Ch3.4)

Trace (Ch3.3)

Sobolev spaces \( W^k_p(\Omega) \) (Ch3.2)

smooth funct. with compact supp \( \mathcal{D}(\Omega):=C^\infty_0 (\Omega)\) (P25)

support \( supp\{u\} \) (P25)

locally integrable function space \( L^{loc}_1(\Omega) \)(P26)

classical diff. operator \( D^\alpha \), with multi-index \( \alpha \) (P25)

LFs on \( \mathcal{D}(\Omega) \) are \( \mathcal{D}' \) the Distributions (\( L_2 \) inner product with \( u \in C(\Omega)\))

integration by parts (eq3.2)

Lipschitz boundary (Def 42)

Motivation: apply Lax-Milgram on 2nd order var problems in \( H^1 \) therefore we have to prove coercivity

Derivatives

Embedding \( H^k \rightarrow H^l \) for \( k>l \) is compact (Th51)

Bramble Hilbert Lemma (Th54)
\( U \) HS, \( L:H^k \rightarrow U \) cont. lin. operator with \( Lq=0 , q \in P^{k-1}\)
\( \Rightarrow \left\Vert Lv \right\Vert_U \leq \left\Vert v \right\Vert_{H^k} \)

Friedrichs inequality (Th52)
\( \left\Vert v\right\Vert _{L_{2}} \preceq \left\Vert \nabla v\right\Vert _{L_{2}}, \forall v\in V_D=\{v \in H^1(\Omega):tr_{\Gamma{_D}}v=0 \} \)

Sobolevs embedding theorem (Th55)

Application

Tartar + Proof = 3 equivalent norms (Th50)

Trace Space \( H^{1/2} \) (Ch3.3.1)

is BS (Th40)

closed subspace \( H^1_0(\Omega) \) (P30)

2 alternative definitions, which are equivalent (under moderate restrictions) (P27) (Th41, Th43)

Poincare (Th53)
\( \left\Vert v\right\Vert _{H^1(\Omega)}^2 \leq \left\Vert \nabla v\right\Vert _{L_{2}}^2 + \left(\int_{\Omega}vdx\right)^{2} \)

Derivation in 1D (P28)

norms (P27)

compact \( \Leftrightarrow \) bounded

\( H^k(\Omega) := W^k_2(\Omega) \) is HS

if \( \Omega \) is bounded domain: \( supp\{u\} \) is compact in \( \Omega \Leftrightarrow u\) vanishes on \( \partial\Omega \)

generalized derivative \( D^\alpha_g u \) of \(u \in \mathcal{D}' \)(Def37)

\( \Rightarrow \) compact embedding \(id: H^1 \rightarrow H^0=L_2 \)

weak is more general than classical, but more restrictive than generalized

is BS and existence of corresponding function in \( H^1 \) + Proof (Le49) = Trace Theorem?

weak derivative \( D^\alpha_w u \) of \(u \in L^{loc}_1(\Omega)\)(Def38)

Hilbert space interpolation (P35)

Application: \( V=H^1, W=L_2, \left\Vert v\right\Vert_A = \left\Vert \nabla v\right\Vert_{L_{2}} \)

trace space onto one edge \( E \) = interpolation space \( H^{1/2}(E) \)

space & norm (P34 & eq3.4)

well defined & cont. trace operator \( tr:H^1((0,h)) \rightarrow \mathbb{R} \) (Th44)

well defined & cont. trace operator \( tr:H^1(\Omega) \rightarrow L_2(\partial\Omega) \) (Th45) Trace Theorem?

integration by parts in \( H^1 \) (P31)

\( \Rightarrow \left\Vert u\right\Vert _{H^1(\Omega)}^2 \simeq \left\Vert \nabla v\right\Vert _{L_{2}(\Omega)}^2 + \left\Vert v\right\Vert _{L_{2}(\omega)}\), with \( \omega \subset \Omega, \left\vert \omega \right\vert > 0 \) in \( \mathbb{R}^d \)

Sobolev spaces over sub-domains (P31)

\( \Rightarrow \left\Vert u\right\Vert _{H^1(\Omega)}^2 \simeq \left\Vert \nabla v\right\Vert _{L_{2}(\Omega)}^2 + \left\Vert v\right\Vert _{L_{2}(\gamma)}\), with \( \gamma \subset \partial\Omega, \left\vert \gamma \right\vert > 0 \) in \( \mathbb{R}^{d-1} \)

Extension operators (P32)

interpolation space \( V_s \)

interpolation norm

goal: explicit form of the trace-norm

conditions for \( u \in H^1(\Omega)\)(Th46)

Construction of sub-domains \( \Omega_i \) and interfaces \( \gamma_{ij} \) in \( \Omega \) (P31)

extension operator (eq3.3)
\( (Eu)(\widehat{x})=u(x) \forall x \in \cup S_i \)
\( (Eu)(x)=u(x) \forall x \in \Omega \)

Extension \( E_0u(\widehat{x})=(1-\eta) u(x) \) is extension from \( H^1(\Omega) \) to \( H^1_0(\widetilde{\Omega}) \) and its bounded (Th48) (\(E_0\) vanishes at \( \partial \widetilde{\Omega} \) )

\( \Rightarrow \) finite element space is sub-space of \( H^1 \)

Extension from \( H^1_0({\Omega}) \) onto larger domains trivial, by zero (P33)

Construction (P32)

ext. operator \( E:H^1(\Omega) \rightarrow H^1(\widetilde{\Omega}) \) is well defined and bounded (Th47)