- hp-Finite Elements (Supp)
Basics (Ch5.0)
Finite element error analysis (Ch5.2)
A posteriori error estimates (Ch5.3)
finite element system assembling (Ch5.1)
Non-conforming FEM (Ch5.4)
Intro (Ch0)
Legendre Polynomials (Ch1)
Projection based interpolation (Ch4)
Orthogonal polynomials on triangles (Ch3)
Err estimate of the L2 projection (Ch2)
finite element \( (T, V_T, \Psi_T) \) (Ciarlet's Def59)
bound interpolation error
basis for error estimate
main application of Bramble-Hilbert (Le63)
equivalent (P46)
\( h_T \)diameter of element \( T \) (P50)
finite element complex \( \{ (T,V_T,\Psi_T) \} \) (P46)
finite element space \( V_{\mathcal{T}}\)
Graded meshes around vertex singularities (P55)
idea: bound approx. error by interpolation error (P49)
Finite element error estimate (Th65)
\( \left\Vert u-u_h \right\Vert_{H^1} \preceq h\left\Vert u \right\Vert_{H^2} \)
Error estimates in \( L_2 \) norm P(52)
Approximation of Dirichlet BC (P53)
if \( A \) is coercive & continuous Th65 holds
Zienkiewicz Zhu EE (P56)
residual EE (P57)
goal driven EE (P61)
Mesh refinement algorithms (Application) (P62)
error estimator (EE) \( \eta (u_h, f) \) (P55)
High order elements (P54)
faster convergence with smoother solutions \( u \)
w/ Dirichlet BC
The non-conforming \( P^1 \) triangle (P66)
2nd Lemma of Strang (Le74)
1st Lemma of Strang (Le73)
Def via Rodrigues formula
\( P_n (x) := \frac{1}{2^nn!} \frac{d^n}{dx^n} (x^2-1)^n\)
w/o Dirichlet BC
formula \( (n+1)P_{n+1}(x) \) (Le2)
Sturm-Liouville diff. eq. satisfied (Le3)
Motivation: optimal balance of mesh size \(h \) & polynomial order \( p \) to limit better than \( \inf_{v_{hp}\in V_{hp}} \Vert u-v_{hp} \Vert_{H^1}\leq ch^{m-1}\Vert u \Vert_{H^m} \)
goal: p-version err estimate \(\leq c(\frac{h}{p})^{m-1}\Vert u \Vert_{H^m} \)
(JP) Jacobi Polynomials (P5)
hp-version would lead to exp. conv. \( \leq ce^{-N^{\alpha}}\)
\( \int\limits^{1}_{-1}P_n(x)\,P_m(x)\, \textrm{dx}=\frac{2}{2n+1}\delta_{n,m}\) (Le1)
polynomials dense in \(L_2(-1,1) \Rightarrow u=\sum\limits_{n=0}^{\infty}a_nP_n\)
with \( a_n \) generalized Fourier coeffs.
approx. err estimates of orth. polynomials (Ch4.0)
\( P_{L_2}^{\Pi_p} \) is \( L_2 \) projection to \({\Pi_p} \)
1D-case (Ch4.1)
\( T \) bounded set
\( V_T \) function space on \( T \)
orthogonal w.r.t \( (u',v')_{L_2,1-x^2}\) as implication of (Le3)
JP are orthogonal w.r.t. the weighted IP
Lagrange finite elements
...on triangles (Ch4.2)
Examples
global interpolation operator \( I_{\mathcal{T}}v_{\vert T} \) (P47)
reference finite element (P46)
\( \Psi_T \) lin. independent functionals on \( V_T \)
projection err is bounded (Le4)
shape regular (for families of triangulations)
Dubiner basis = \( L_2(T) \) orthogonal basis for \( \Pi_p(T)\) by JPs(Le5)
equivalent \( \Rightarrow \) interpolation equivalent (Le60)
affine equivalent
Aubin-Nitsche (Th66) + Proof
\( \left\Vert u-u_h \right\Vert_{L_2} \preceq h^2\left\Vert u \right\Vert_{H^2} \)
Examples: \( P^1, P^0\) with different node locations
Red Green Refinement
connectivity matrix \( C_T \in \mathbb{R}^{N \times N_T} \) (P47)
regularity (P47)
- Equilibrated Residual Error Estimates (Supp)
dual problem
marked edge bisection
Hermite finite elements
interpolation equivalent
efficient \( \left\Vert u-u_h \right\Vert_V \geq C_2 \eta (u_h, f) \)
usual error estimators \( \eta^2 (u_h, f) = \sum_{T \in \mathcal{T}} \eta^2_T (u_h, f) \)
Clement quasi-interpolation operator (Def69)
no requirement for \( V_h \subset V \)
\( \Vert u-u_h \Vert_h \preceq \inf_{v_h \in V_h} \Vert u-v_h \Vert_h + \sup_{w_h \in V_h} \frac{A_h(u,w_h)-f_h/w_h)}{\Vert w_h \Vert_h}\)
Assume: coerc. & cont. of \( A_h(.,.) \)
\( C^m \) smooth functions
quasi uniform triangulation/mesh (P51)
(regular) triangulation \( \mathcal{T}=\{ T_1,...,T_M \} \) (P46)
pseudo code
reliability (Th71) + Proof
2nd Lemma of Strang gives error estimate \( \left\Vert u-u_h \right\Vert \preceq h \Vert u \Vert_{H^2} \)
reliable \( \left\Vert u-u_h \right\Vert_V \leq C_1 \eta (u_h, f) \)
or approx. by Robin BC
local efficiency estimates \( \left\Vert u-u_h \right\Vert_{H^1(\omega_T)} \geq C_2 \eta_T (u_h, f) \)
numerical integration
difficult: interpolation operator to an \( H^1 \) conforming FE space
BLF & LF replaced by mesh dependent forms
Applications (NS-eq, \(L_2\) Matrix is diag.)
projection based interp.
finite element problem
\( I_p\)err estimates for \( u \in H^1, p \in L_2, q \in \Pi_p \)
usual spaces for \( T \subset \mathbb{R}^2\)
p-version Galerkin Method for Dirichlet problem through operator \( I_p\)
point evaluations functionals
\( \exists \) extension \( \widetilde{v}\in \Pi_p(T) \) (Le7)
nodal basis \( \{\varphi_T^i \}\) for \( V_T \), dual to \( \Psi_T\)
linear or quadratic line segment
err estimate (which was the goal) (Le8)
Hermite line segment
computation of the lifting \( \Vert \sigma^{\Delta}\Vert \) (Ch2)
\( V_h^{nc}=\left\{ v \in L_2 : v_{\vert T} \in P^1 (T), v \mathrm{\,is\,cont.\, in\, edge\,midpoints} \right\}\)
inserting results in reduced system
commuting diagram \( \Pi_{L_2}^{\Pi_{p-1}}u'=(I_pu)' \) (Le6)
triangle
local nodal interpolation operator \( I_T v\) (P46) (is projection)
interpolation equivalent
easy
obtain linear system
not equivalent
are equivalent
framework (Ch1)
using point eval. and derivatives
\( Q^p \)
\( P^p \)
explicit construction
Morely
constant
rewrite \( r() \) as functional
non-conforming
localize construction of flux
further notes/attrinbutes
linear
on n-dim simplices
Raviart-Thomas
applies also in 3D
residual \( r(\cdot)\in V^*\)
\(r(v)=f(v)-A(u_h,v),\,v\in V\)
in 1D
goal: provide upper-bounds for discretization err w/o generic constants
on tensor product elements
main idea: calculate lifting \( \sigma^{\Delta}\)
proves existence of equilibrated flux
of equilibrated fluxes on vertex patch
evaluation \(L_2\) norm of \( \sigma^{\Delta}\) easy
such that \( \textrm{div}\sigma^{\Delta}=r\)
of \( \sigma^{\Delta} \) in terms of BDM elements
instead: solve local optimization problem
res-err estimator w/ weighted \(L_2\)-norms
name: flux-postprocessing
\( \Rightarrow \textrm{div}\sigma=f \Rightarrow \) flux in exact equlibrium with source \( f \)
different representation by sums of
problem: direct eval. of \( \Vert r \Vert\) not feasible
equlibrated res err estimator \( \eta^{er}\)
edge-res (normal jump) \( r_E \)
element-res \( r_T \)
efficient w/ generic constant c
reliable w/ c=1