• hp-Finite Elements (Supp)

Basics (Ch5.0)

Finite element error analysis (Ch5.2)

A posteriori error estimates (Ch5.3)

finite element system assembling (Ch5.1)

Non-conforming FEM (Ch5.4)

Intro (Ch0)

Legendre Polynomials (Ch1)

Projection based interpolation (Ch4)

Orthogonal polynomials on triangles (Ch3)

Err estimate of the L2 projection (Ch2)

finite element \( (T, V_T, \Psi_T) \) (Ciarlet's Def59)

bound interpolation error
basis for error estimate
main application of Bramble-Hilbert (Le63)

equivalent (P46)

\( h_T \)diameter of element \( T \) (P50)

finite element complex \( \{ (T,V_T,\Psi_T) \} \) (P46)

finite element space \( V_{\mathcal{T}}\)

Graded meshes around vertex singularities (P55)

idea: bound approx. error by interpolation error (P49)

Finite element error estimate (Th65)
\( \left\Vert u-u_h \right\Vert_{H^1} \preceq h\left\Vert u \right\Vert_{H^2} \)

Error estimates in \( L_2 \) norm P(52)

Approximation of Dirichlet BC (P53)
if \( A \) is coercive & continuous Th65 holds

Zienkiewicz Zhu EE (P56)

residual EE (P57)

goal driven EE (P61)

Mesh refinement algorithms (Application) (P62)

error estimator (EE) \( \eta (u_h, f) \) (P55)

High order elements (P54)
faster convergence with smoother solutions \( u \)

w/ Dirichlet BC

The non-conforming \( P^1 \) triangle (P66)

2nd Lemma of Strang (Le74)

1st Lemma of Strang (Le73)

Def via Rodrigues formula
\( P_n (x) := \frac{1}{2^nn!} \frac{d^n}{dx^n} (x^2-1)^n\)

w/o Dirichlet BC

formula \( (n+1)P_{n+1}(x) \) (Le2)

Sturm-Liouville diff. eq. satisfied (Le3)

Motivation: optimal balance of mesh size \(h \) & polynomial order \( p \) to limit better than \( \inf_{v_{hp}\in V_{hp}} \Vert u-v_{hp} \Vert_{H^1}\leq ch^{m-1}\Vert u \Vert_{H^m} \)

goal: p-version err estimate \(\leq c(\frac{h}{p})^{m-1}\Vert u \Vert_{H^m} \)

(JP) Jacobi Polynomials (P5)

hp-version would lead to exp. conv. \( \leq ce^{-N^{\alpha}}\)

\( \int\limits^{1}_{-1}P_n(x)\,P_m(x)\, \textrm{dx}=\frac{2}{2n+1}\delta_{n,m}\) (Le1)

polynomials dense in \(L_2(-1,1) \Rightarrow u=\sum\limits_{n=0}^{\infty}a_nP_n\)
with \( a_n \) generalized Fourier coeffs.

approx. err estimates of orth. polynomials (Ch4.0)

\( P_{L_2}^{\Pi_p} \) is \( L_2 \) projection to \({\Pi_p} \)

1D-case (Ch4.1)

\( T \) bounded set

\( V_T \) function space on \( T \)

orthogonal w.r.t \( (u',v')_{L_2,1-x^2}\) as implication of (Le3)

JP are orthogonal w.r.t. the weighted IP

Lagrange finite elements

...on triangles (Ch4.2)

Examples

global interpolation operator \( I_{\mathcal{T}}v_{\vert T} \) (P47)

reference finite element (P46)

\( \Psi_T \) lin. independent functionals on \( V_T \)

projection err is bounded (Le4)

shape regular (for families of triangulations)

Dubiner basis = \( L_2(T) \) orthogonal basis for \( \Pi_p(T)\) by JPs(Le5)

equivalent \( \Rightarrow \) interpolation equivalent (Le60)

affine equivalent

Aubin-Nitsche (Th66) + Proof
\( \left\Vert u-u_h \right\Vert_{L_2} \preceq h^2\left\Vert u \right\Vert_{H^2} \)

Examples: \( P^1, P^0\) with different node locations

Red Green Refinement

connectivity matrix \( C_T \in \mathbb{R}^{N \times N_T} \) (P47)

regularity (P47)

  • Equilibrated Residual Error Estimates (Supp)

dual problem

marked edge bisection

Hermite finite elements

interpolation equivalent

efficient \( \left\Vert u-u_h \right\Vert_V \geq C_2 \eta (u_h, f) \)

usual error estimators \( \eta^2 (u_h, f) = \sum_{T \in \mathcal{T}} \eta^2_T (u_h, f) \)

Clement quasi-interpolation operator (Def69)

no requirement for \( V_h \subset V \)

\( \Vert u-u_h \Vert_h \preceq \inf_{v_h \in V_h} \Vert u-v_h \Vert_h + \sup_{w_h \in V_h} \frac{A_h(u,w_h)-f_h/w_h)}{\Vert w_h \Vert_h}\)

Assume: coerc. & cont. of \( A_h(.,.) \)

\( C^m \) smooth functions

quasi uniform triangulation/mesh (P51)

(regular) triangulation \( \mathcal{T}=\{ T_1,...,T_M \} \) (P46)

pseudo code

reliability (Th71) + Proof

2nd Lemma of Strang gives error estimate \( \left\Vert u-u_h \right\Vert \preceq h \Vert u \Vert_{H^2} \)

reliable \( \left\Vert u-u_h \right\Vert_V \leq C_1 \eta (u_h, f) \)

or approx. by Robin BC

local efficiency estimates \( \left\Vert u-u_h \right\Vert_{H^1(\omega_T)} \geq C_2 \eta_T (u_h, f) \)

numerical integration

difficult: interpolation operator to an \( H^1 \) conforming FE space

BLF & LF replaced by mesh dependent forms

Applications (NS-eq, \(L_2\) Matrix is diag.)

projection based interp.

finite element problem

\( I_p\)err estimates for \( u \in H^1, p \in L_2, q \in \Pi_p \)

usual spaces for \( T \subset \mathbb{R}^2\)

p-version Galerkin Method for Dirichlet problem through operator \( I_p\)

point evaluations functionals

\( \exists \) extension \( \widetilde{v}\in \Pi_p(T) \) (Le7)

nodal basis \( \{\varphi_T^i \}\) for \( V_T \), dual to \( \Psi_T\)

linear or quadratic line segment

err estimate (which was the goal) (Le8)

Hermite line segment

computation of the lifting \( \Vert \sigma^{\Delta}\Vert \) (Ch2)

\( V_h^{nc}=\left\{ v \in L_2 : v_{\vert T} \in P^1 (T), v \mathrm{\,is\,cont.\, in\, edge\,midpoints} \right\}\)

inserting results in reduced system

commuting diagram \( \Pi_{L_2}^{\Pi_{p-1}}u'=(I_pu)' \) (Le6)

triangle

local nodal interpolation operator \( I_T v\) (P46) (is projection)

interpolation equivalent

easy

obtain linear system

not equivalent

are equivalent

framework (Ch1)

using point eval. and derivatives

\( Q^p \)

\( P^p \)

explicit construction

Morely

constant

rewrite \( r() \) as functional

non-conforming

localize construction of flux

further notes/attrinbutes

linear

on n-dim simplices

Raviart-Thomas

applies also in 3D

residual \( r(\cdot)\in V^*\)
\(r(v)=f(v)-A(u_h,v),\,v\in V\)

in 1D

goal: provide upper-bounds for discretization err w/o generic constants

on tensor product elements

main idea: calculate lifting \( \sigma^{\Delta}\)

proves existence of equilibrated flux

of equilibrated fluxes on vertex patch

evaluation \(L_2\) norm of \( \sigma^{\Delta}\) easy

such that \( \textrm{div}\sigma^{\Delta}=r\)

of \( \sigma^{\Delta} \) in terms of BDM elements

instead: solve local optimization problem

res-err estimator w/ weighted \(L_2\)-norms

name: flux-postprocessing
\( \Rightarrow \textrm{div}\sigma=f \Rightarrow \) flux in exact equlibrium with source \( f \)

different representation by sums of

problem: direct eval. of \( \Vert r \Vert\) not feasible

equlibrated res err estimator \( \eta^{er}\)

edge-res (normal jump) \( r_E \)

element-res \( r_T \)

efficient w/ generic constant c

reliable w/ c=1