Intro (Ch0)

Predictor corrector methods (Ch3)

Variation of constants (Ch2)

Lie Trotter splitting (Ch1)

Examples (Ch4)

operator exponentials

ODE u+Au+Bu=0

splitting methods

methods which preserve stationary solutions

ODE to equivalent integral eq.

bounded operators \( \Rightarrow O(\tau^m)\)

use numerical int. methods

3 steps for \(u(t+1)\)

Err ana = consistency err for the num. int. + stability of discrete evolution

exact flow \( e^{-\tau(A+B)} \)

Strangs splitting w/ evolution \( e^{-\frac{\tau}{2}A }e^{-\tau B}e^{-\frac{\tau}{2}A }\)
& truncation err \( O(\tau^3)\)

\( A,B \) bounded \( \Rightarrow e^{-\tau(A+B)}-e^{-\tau A}e^{-\tau B}=O(\tau^2) \) (Le1)

Alternating directions method (ADI) (Ch4.3)

unbounded \( A \) & bounded \( B \)

convection diffusion eq (Ch4.1)

3 options for the next time step

discrete evolution \( u_{n+1}=e^{-\tau B}e^{-\tau A}u_n \)

N-S-eq.s (Ch4.4.)

\( A,B\) commute \( \Rightarrow \) splitting exact \( e^Ae^B=e^{A+B}\)

bounded \( \Rightarrow \) convergent series
\( e^A=\sum\limits^{\infty}_{n=0} \frac{1}{n!}A^n\)

Schrödinger eq. (Ch4.2)

unbounded \( \Rightarrow \) exp. is solution of diff. eq.

combine existing solvers

sub-problems

\( A \) elliptic \( \Rightarrow e^{-tA}\) bounded operator

linear/non-linear operators

IC

left-sided rectangular rule = 1 step expl. Euler + solve simpler ODE

implicit midpoint rule = combi

right-sided rectangular rule = solve A-ode + 1 step of implicit Euler