Please enable JavaScript.
Coggle requires JavaScript to display documents.
LOGARITMI - Coggle Diagram
LOGARITMI
log(a)b=c <=> a^c=b
log: logaritmo a: base b: argomento
a>0
b>0
a=/1
logaritmi particolari
ln(x) logaritmo neperiano o naturale
log(x) logaritmo di Briggs o decimale
proprietà
log(a)(b/c)=log(a)b-log(a)c
log(a)(b^c)=(c)log(a)b
log(a)(bc)=log(a)b+log(a)c
cambio base
log(a)b=log(c)b/log(c)a
funzioni trascendenti
esponenziali
logaritmiche
goniometriche
y=log(a)x
funzione inversa dell'esponenziale
rappresentazioni grafiche
a>1
segno: negativo da 0 a 1, positivo da 1 a +∞
monotonia: crescente
intersezioni: asse x (0;1)
comportamento agli estremi del dominio: x tende a +∞ allora y tende a +∞, x tende a 0+ allora y tende a -∞
insieme immagine: R
asintoti: x=0 av
dominio: R+
0<a<1
dominio: R+
insieme immagine: R
intersezioni: asse x (0;1)
segno: positivo da 0 a 1, negativo da 1 a +∞
monotonia: decrescente
comportamento agli estremi del dominio: x tende a +∞ allora y tende a -∞, x tende a 0+ allora y tende a +∞
asintoti: x=0 av
trasformazioni
calcolare i logaritmi
se base e argomento hanno una relazione
risultato razionale, lo posso calcolare da solo
se base e argomento non hanno una relazione
risultato irrazionale, devo usare la calcolatrice
equazioni e disequazioni logaritmiche
l'incognita può essere sia alla base che all'argomento
risoluzione di equazioni esponenziali con basi diverse