Please enable JavaScript.
Coggle requires JavaScript to display documents.
EQUAÇÃO DIFERENCIAL DE SEGUNDA ORDEM - Coggle Diagram
EQUAÇÃO DIFERENCIAL DE SEGUNDA ORDEM
Vibração de Molas
Lei de Hooke: F = - k . x
Sem força de resistência.
Considera a segunda lei de Newton.
ODE de Segunda Ordem Homogênea
Movimento Harmônico Simples
Vibrações Amortecidas
Massa sujeita à uma força de atrito ou à uma força de amortecimento
De acordo com a segunda lei de Newton, teremos:
ODE de Segunda Ordem Homogênea
Super Amortecimento
c^2 – 4mk > 0
Amortecimento Crítico
c^2 – 4mk = 0
Sub Amortecimento
c^2 – 4mk < 0
Vibrações Forçadas
Agora, além da força restauradora e da força de amortecimento, o movimento da massa é afetado pela força externa F(t).
Então, pela segunda lei de Newton, temos:
Saímos de uma equação homogênea para uma não homogênea.
Uma força externa que ocorre comumente é uma função força periódica.
Nesse caso, e na falta de uma força de amortecimento, ou seja, C = 0, se W0 = W, teremos vibrações de grande amplitude.
Fenômeno conhecido como RESSONÂNCIA.
Aplicando na questão:
Sabemos que ocorre ressonância quando:
A (iw)^2 + B (iw) + C = 0
Encontramos ressonância quando C = W^2
Nunca obteremos ressonância, pois nunca encontramos ZERO e y = e^(iwt) nunca é solução NULA.