Please enable JavaScript.
Coggle requires JavaScript to display documents.
數列 (多項式的積分, 數列的極限, 積分的應用, 積分的簡介) - Coggle Diagram
數列
-
數列的極限
4.無窮等比級數列與循環小數
藉由無窮等比級數求和的想法,我們可將所有的循環小數化為分數或. 整數。
-
-
-
積分的簡介
積分的一個嚴格的數學定義由波恩哈德·黎曼給出,因此習慣上我們常見的積分也稱為「黎曼積分」。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高級的積分定義逐漸出現,有了對各種積分區間上的各種類型的函數的積分。
積分發展的動力源自實際應用中的需求。實際操作中,有時候可以用粗略的方式進行估算一些未知量,但隨著科技的發展,很多時候需要知道精確的數值。要求簡單幾何形體的面積或體積,可以套用已知的公式。[註 4]但如果游泳池是卵形、拋物型或更加不規則的形狀,就需要用積分來求出容積。物理學中,常常需要知道一個物理量(比如位移)對另一個物理量(比如力)的累積效果,這時也需要用到積分。