Please enable JavaScript.
Coggle requires JavaScript to display documents.
Проблема: Variable input saliency - Coggle Diagram
Проблема: Variable input saliency
RNN
"У RNN нет нормальных способов интерпретации"
TCN
Как делают в TCN temporal saliency? Какая общая идея
Saliency в LANGUAGE TASKS
Metrics: evaluate performance of saliency methods
Precision (max=1): полученные фичи должны содержать meaningful signals (сколько из найденных фичей на самом деле важны)
Are all features identified as salient informative?
Recall (max=1): количество фичей, которые содержат important signal (доля найденных их всех -- находятся не все)
Was the saliency method able to identify all informative features?
Some neural architectures tend to use more feature information when making a prediction (i.e., have more recall in terms of importance); this may be the desired behavior in many time series applications where importance changes over time, and the goal of using an interpretability measure is to detect all relevant features across time.
Нельзя сравнивать методы просто по изменению prediction после masking
Поняли, что in general архитектуры и saliency методы плохо работают на time series Это происходит из-за смешения time and feature domains
Просто улучшают saliency map: two-step temporal saliency rescaling
Multivariate time series saliency: нельзя полагаться на человеческое восприятия, потому что нельзя сделать saliency overlay
Классы методов
Perturbation based
Feature occlusion
Differnce in output when REPLACING CONTIGUOUS REGION WITH BASELINE
For time series we considered continuous regions as features with in same time step or multiple time steps grouped together.
Feature Ablation
computes attribution as the difference in output after replacing each feature with a baseline
Feature Permutation
Random feature permute within a batch
Gradient based
Integrated gradients
Average gradient while input changes from baseline
Smoothgrad
Gradient computed N times with noise each time
DeepLIFT
Neuron activation?
Gradient SHAP
TSR on top of any saliency method
Baseline: random assignment
Модели
LSTM
LSTM with input-cell attention
TCN
Трансформеры
model architectures have significant effects on the quality of saliency maps