Chapter 15 - Electroweak Unification

Summarizing weak interaction

W transforms neutrino leptons within the same flavor

W transforms up-type quarks (u, c, t) \(\leftrightarrow\) down-type quarks (d', s', b') within the same generation in weak basis (not flavor basis, which is (d, s, b))

Therefore, construct a weak doublet: \( \begin{pmatrix}\nu_e\\ e \end{pmatrix}_L\), \(\begin{pmatrix}\nu_\mu\\ \mu \end{pmatrix}_L\), \(\begin{pmatrix}\nu_\tau\\ \tau \end{pmatrix}_L\), \(\begin{pmatrix}u\\ d' \end{pmatrix}_L\), \(\begin{pmatrix}c\\ s' \end{pmatrix}_L\), \(\begin{pmatrix}t\\ b' \end{pmatrix}_L\)

Weak doublet is described by weak isospin: \(I_w = \frac{1}{2}, I_w^{(3)}(\nu_e) = \frac{1}{2}, I_w^{(3)}(e^-) = -\frac{1}{2}\)

Upper and lower components differ in electric charge by \(1 e\); Only LH particle chiral states interact weakly; RH particles do not interact weakly, e.g. \(e^-_R, d_R\) have weak charge \(I_w = I_w^{(3)}=0\)

\(SU(2)_L\)

Local gauge symmetry: \(\phi(x) \rightarrow \phi'(x) = e^{-ig_w \mathbf{\alpha(x)}\cdot \mathbf{T}} \phi(x)\)

\(\mathbf{T} = \frac{1}{2}\mathbf{\sigma}\) \(\rightarrow\) 3 generators \(\rightarrow\) new interaction \( -ig_w \frac{1}{2}\sigma_k\gamma^\mu W^k_\mu\phi_L\) \(\rightarrow\) 3 weak currents \(\rightarrow\) 3 fields \( \mathbf{W^k_\mu}\), k={1,2,3}, two charged, one neutral.

Two of the charged fields give rise to physical W bosons: \(\mathbf{W^{\pm}_\mu} = \frac{1}{\sqrt{2}}(W^{(1)}_\mu \mp W^{(2)}_\mu)\)

Unification

replace \(U(1)\) \(\rightarrow\) \(U(1)_Y\) local sym with weak hypercharge: \(\phi(x) \rightarrow \phi'(x) = e^{-i g' \frac{Y}{2} \zeta(x)} \phi(x)\)

Interaction term: \(g' \frac{Y}{2}\gamma^\mu B_\mu \psi\)

analogy: \(Y g'/2 \leftrightarrow Qe\)

Together with \(SU(2)_L\), physical photon and Z boson are: \(A_\mu = \cos(\theta_W) B_\mu + \sin(\theta_W) W^{(3)}_\mu\), \(Z_\mu = -\sin(\theta_W) B_\mu + \cos(\theta_W) W^{(3)}_\mu\)

\(W^{(3)}_\mu\) is left over; this is not a physical state!

Since we know QED and CC weak interaction, should predict everything about \(Z_\mu\) once we know \(\theta_W\)!

Y from \(U(1)_L\) should be a combination of Q (from \(A_\mu\)) and \(I_W^{(3)}\) (from \(Z_\mu\)).

\(Y = 2(Q - I_W^{(3)}\))

\(e = g' \cos(\theta_W) = g_W \sin(\theta_W)\), \(\tan(\theta_W) = \frac{g'}{g_W} \), and \(g_Z = \frac{g_W}{\cos(\theta_W)}\)

\(\frac{\alpha}{\alpha_W} = \sin^2(\theta_W) = 0.23\)

Screen Shot 2022-03-03 at 11.12.32 PM

Z (neutral current) couples to both LH and RH chiral states, but not equally! \(j^\mu_Z = g_Z(c_L \bar{u}_L\gamma^\mu u_L + c_R \bar{u_R}\gamma^\mu u_R) \)

\(c_L = I_w^{(3)} - Q_f \sin^2(\theta_W) \), \(c_R = -Q_f \sin^2(\theta_W)\)

Z boson interaction vertex: \(-ig_Z\frac{1}{2}\gamma^\mu(c_V - c_A \gamma^5)\)

\(c_V = c_L + c_R = I_W^{(3)} - 2Q\sin^2(\theta_W)\), \(c_A = c_L - c_R = I_W^{(3)}\)

Z decay

\(\Gamma(Z \rightarrow f\bar{f}) = \frac{g_Z^2 m_Z}{48 \pi} \Big((c^f_{V})^2 + (c^f_{A})^2\Big)\)

Total width to \(f\bar{f}\): \(\Gamma_{Z} = 3 \Gamma_{\nu_e\bar{\nu}_e} + 3 \Gamma_{e\bar{e}} + 3 \times 2 \Gamma_{u\bar{u}} + 3\times 3 \Gamma_{d\bar{d}} =\) 2.5 GeV.

Note: \(W^{\pm}\) is \(I = 1, I_W^{(3)} = \pm 1\). For RH anti-particle, \(I_W^{(3)}(\bar{f}) = - I_W^{(3)}(f)\)

\(BR(Z\rightarrow \nu\bar{\nu})=21\%\), \(BR(Z\rightarrow l^+l^-)=10\%\), \(BR(Z\rightarrow hadron)=69\%\) (jets)

Could not decay to top quark (173 GeV > 91 GeV); 3 comes from color d.o.f; applied radiative correction to hadronic decay.