二次曲線

雙曲線

橢圓

拋物線

定義

概述

定義

方程式

拋物線是一種圓錐曲線。在一個平面內,拋物線的每一點Pi,其與一個固定點F之間的距離等於其與一條不經過此點F的固定直線L之間的距離。這固定點F叫做拋物線的「焦點」,固定直線L叫做拋物線的「準線」。

特徵名稱與特性

光學性質

焦弦性質

在焦點上的點光源發出的光線,經拋物線反射後平行於拋物線的對稱軸。典型應用如手電筒。

過拋物線焦弦兩端的切線的交點在拋物線的準線上;

過拋物線焦弦兩端的切線互相垂直;

以拋物線焦弦為直徑的圓與拋物線的準線相切;

image

生活應用

安東尼·高第所設計的米拉公寓的拱型結構 image

生活應用

特點

定義

橢圓是一種圓錐曲線:如果一個平面切截一個圓錐面,且不與它的底面相交,也不與它的底面平行,則圓錐和平面交截線是個橢圓。


在代數上說,橢圓是在笛卡爾平面上如下形式的方程所定義的曲線

平面交截直角圓錐面的兩半的一類圓錐曲線。

離心率

橢圓的形狀可以用叫做橢圓的離心率的一個數來表達,離心率是小於 1 大於等於 0 的實數。離心率 0 表示著兩個焦點重合而這個橢圓是圓。

標準方程式image

是在同一平面內到定點的距離等於定長的點的集合

平面內一動點到兩定點的距離的比,等於一個常數,則此動點的軌跡是圓。

(1)共漸近線,與漸近線平行得線和雙曲線有且只有一個交點;(2)焦距相等;(3)兩雙曲線的離心率平方後的倒數相加等於1。

maxresdefault

雙曲線在工程、光學、聲學上都有很多應用,在土木工程中雙曲線就被用來評估基樁極限承載力

特點

圓有無數條半徑和無數條直徑,且同圓內圓的半徑長度永遠相同。

圓是軸對稱、中心對稱圖形

對稱軸是直徑所在的直線。

標準式

圓的標準式+圓心為(+h,k+),半徑為+r+的圓方程式為+(+x+–+h+)2+++(+y+–+k+)2+=+r2+此式稱為圓的標準式

click to edit

click to edit

click to edit