2 Cực trị của hàm số

định nghĩa

Cho hàm số xác định và liên tục trên khoảng (a;b) và x0 ∈ (a; b)

• Nếu tồn tại h > 0 sao cho f(x) < f(x0) và ∀x ∈(x0 - h; x0 + h) và x ≠ x0 thì ta nói f đạt cực đại tại x0.

• Nếu tồn tại h > 0 sao cho f(x) > f(x0) và ∀x ∈(x0 - h; x0 + h) và x ≠ x0 thì ta nói f đạt cực tiểu tại x0.

Điều kiện cần và đủ để hàm số đạt cực trị

click to edit

Điều kiện cần. Nếu hàm số f(x) đạt cực trị tại x0 và hàm số f(x) có đạo hàm tại điểm x0 thì f'(x0)= 0 .

Ghi chú: Hàm số f(x) có thể đạt cực trị tại một điểm mà tại đó nó không có đạo hàm.

Điều kiện đủ. Giả sử hàm số f(x) xác định trên (a; b) và x0 ∈ (a; b)

Định lí 1

: Nếu f(x) có đạo hàm trên (a; b){x0} và với h > 0 sao cho (x0 - h; x0 + h) ⊂ (a; b) ta có

ly-thuyet-toan-12-chuong-1-cuc-tri-cua-ham-so-1

=> x0 là điểm cực đại của hàm số.

ly-thuyet-toan-12-chuong-1-cuc-tri-cua-ham-so-1

=> x0 là điểm cực tiểu của hàm số.

Định lí 2

Giả sử hàm số f(x) có đạo hàm cấp hai trên (a;b)

ly-thuyet-toan-12-chuong-1-cuc-tri-cua-ham-so-3 (1)

=> x0 là điểm cực tiểu của hàm số.

THẨM MINH TÀI 12A1