Data fusion

Evidential theory

Modeling

Mass function

Plausibility function

Affaiblissement

αj=0 : total ignorance

Belief function

Estimation

Simple support functions

Fonction de croyance complémentaire

Fonction sur singletons

Combinaison

Mass modification based

Conflict redistribution based

Dempster Shafer rule

Focality

Synopsis

+Certainty convergence

---Total certainty to minor opinion

--- Loss of majority opinion

---unearned mass

Corrective strategy of body evidence

Total/partial conflict redistribution strategy

Décision

Max de plausibilité

Max de croyance

Can represent imprecisions

Vote decisional method

Combination

MEk(x) =Σmj=1Mjk(x) 

is associative

is commutative

Problems

if sources are pair

total incertitude

Decision

majority voting

absolute majority voting

if $$M^{E}_{k} (x) > m/2$$

Source ponderation

$$\mathcal{M}_{k}^{E}(x)\ = \Sigma_{j=1}^{m} \alpha _{j}M^{j}_k (x) \ $$

non idempotent

needs learning

success criterions : accuracy...

$$\mathcal{M}_{k}^{E}(x)\ = \Sigma_{j=1}^{m} \alpha _{jk}M^{j}_k (x) \ $$

Simple, naturlisch

no prior knowledge

Modèle probabiliste

Approche objectiviste

Approche subjective (Bayésienne)

Representing ignorance

Principe de raison insuffiante

if information is absent, take uniform law

ignorance : uniform law => maximum entropy

Combinaisons

Bayesian

other operators

$$ p(d_{i}|S_1,...,S_m) = \frac{p(S_1,S_2,...,S_m|d_i)p(d_i)}{p(S_1,...,S_m)} $$

$$ p(d_{i}|S_1,...,S_m) = \frac{p(S_1|d_i)p(S_2|S_1,d_i) ... p(S_m|S_1,...,S_{m-1} ,d_i ) p(d_i) }{ p(S_1) p(S_2|S_1) ... p(S_m|S_1,...,S_{m-1}) } $$

$$Using\ Independence\ hypothesis\ : \frac{\Pi ^m_{j=1} p(S_j|d_i) p(d_i) }{\Pi ^m_{j=1} p(S_j) } $$

Posterior

$$ p(H_i /x) = \frac{v_x (H_i) p(H_i) }{ \Sigma_{H_j \in \Omega} v_x (H_j) p(H_j) } $$

Likelihood

$$ v_{x_{1,2} }(H_i) = \frac{v_{x_1} (H_i) v_{x_2} (H_i) }{ \Sigma_{H_j \in \Omega} v_{x_1} (H_j) v_{x2} (H_j) } $$

Conflict

No available conflict notion

total conflict, no possible likelihood calculation

Decision

posterior max : MAP

Max likelihood : MV

confusion between ignorance and equiprobability

good for rich knowledges

no coflict modelisation

closed world exclusivity, exhaustivity

continuous distribution

Fuzzy logic

permits representing imprecisions and incertitudes

introduce semantics

combine variations of info types

Fuzzy sets theory

$$\mathcal{X} (x)$$

$$1\ if\ x\ \in\ A$$

$$0\ if\ x\ \notin\ A$$

Subjective neighboring notion

Noyau

$$ Noy(A)\ ={x \in A : \mu_A (x) = 1 } $$

$$Normalised\ sub-set : Noy(A) != \emptyset $$

Support

$$ {x \in A : \mu_A (x) > 0 } $$

Height

$$sup_{x \in A}(x) $$

Cardinal

$$|A| = \Sigma_{s \in S} \mu_A (x)$$

$$Coupe\ \alpha$$

$$A_{\alpha} = { X\in S : \mu _A (x) \geq \alpha }$$

for defuzzifying

Fuzzy number

approximately tolerable interval

Possibility theory

fuzzifying

needs

univers de discours

partition classifying of that universe

belonging functions

Goal

get a more sure and precise decision

$$m_{DS}(X)=\frac{m_{12}(H)}{1-m_{12}(\emptyset)}$$ $$m_{12}(H)= \Sigma m_1(H_1) m_2 (H_2)$$

Calcul du consensus

+Disappearing ignorance

click to edit