Machine learning
Suprevised
Regression
Classification
Linear Regression
from sklearn.linear_model import LinearRegression
LR = LinerRegression()
LR.fit(x_train, ytrain)
LR.coef
LR.intercept_
predictions = LR.predict(your_x_data)
prediction.score(x,y) : gives R2
Naive Bayes
from sklearn.naive_bayes import MultinomialNB
your_model = MultinomialNB()
your_model.fit(x_training_data, y_training_data)
predictions = your_model.predict(your_x_data)
probabilities = your_model.predict_proba(your_x_data)
K-Nearest Neighbors
from sklearn.neigbors import KNeighborsClassifier
your_model = KNeighborsClassifier()
your_model.fit(x_training_data, y_training_data)
predictions = your_model.predict(your_x_data)
probabilities = your_model.predict_proba(your_x_data)
Unsupervised
K-Means
from sklearn.cluster import KMeans
your_model = KMeans(n_clusters=4, init='random')
your_model.fit(x_training_data)
predictions = your_model.predict(your_x_data)
Validating the Model
accuracy, recall, precision, and F1 score
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
print(accuracy_score(true_labels, guesses))
print(recall_score(true_labels, guesses))
print(precision_score(true_labels, guesses))
print(f1_score(true_labels, guesses))
confusion matrix
from sklearn.metrics import confusion_matrix
print(confusion_matrix(true_labels, guesses))
Training sets and Test sets
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2)
Distances
Euclidean Distance
Manhattan Distance
Hamming Distance
click to edit
from scipy.spatial import distance
distance.euclidean()
.cityblock()
.hamming()
Correlation
click to edit