Função

A função determina uma relação entre os elementos de dois conjuntos. Podemos defini-la utilizando uma lei de formação, em que, para cada valor de x, temos um valor de f(x). Chamamos x de domínio e f(x) ou y de imagem da função.


A formalização matemática para a definição de função é dada por: Seja X um conjunto com elementos de x e Y um conjunto dos elementos de y, temos que:


f: x → y

Tipos de Funções

image

Função injetora ou injetiva

Função Sobrejetora ou sobrejetiva

Função bijetora ou bijetiva

image

Na função constante, todo valor do domínio (x) tem a mesma imagem (y).

Fórmula geral da função constante:

f(x) = c

x = Domínio

f(x) = Imagem

c = constante, que pode ser qualquer número do conjunto dos reais.

Exemplo de gráfico da função constante: f(x) = 2

image

A função par é simétrica em relação ao eixo vertical, ou seja, à ordenada y. Entenda simetria como sendo uma figura/gráfico que, ao dividi-la em partes iguais e sobrepô-las, as partes coincidem-se perfeitamente.

Fórmula geral da função par:

f(x) = f(- x)

x = domínio

f(x) = imagem

  • x = simétrico do domínio

Exemplo de gráfico da função par: f(x) = x2

image

A função ímpar é simétrica (figura/gráfico que, ao dividi-la em partes iguais e sobrepô-las, as partes coincidem-se perfeitamente) em relação ao eixo horizontal, ou seja, à abscissa x.

Fórmula geral da função ímpar

f(– x) = – f(x)

– x = domínio

f(– x) = imagem

  • f(x) = simétrico da imagem

Exemplo de gráfico da função ímpar: f(x) = 3x