Please enable JavaScript.
Coggle requires JavaScript to display documents.
Teorema Fundamental del Calculo - Coggle Diagram
Teorema Fundamental del Calculo
El Teorema Fundamental del Cálculo proporciona un método abreviado para calcular integrales definidas, sin necesidad de tener que calcular los límites de las sumas de Riemann.
Conceptualmente, dicho teorema unifica los estudios de la derivación e integración, mostrando que ambos procesos son mutuamente inversos.
En mi opinion saber que la las derivadas son la inversa de la integral, es manera de mejor guiarnos a los conceptos y operaciones de calculo.
El teorema fundamental del cálculo dice que la derivada de la integral {F(x)} de la función continua {f(x)} es la propia {f(x)} {F'(x)=f(x)} El teorema fundamental del cálculo nos indica que la derivación y la integración son operaciones inversas.
Al integrar una función continua y luego derivarla se recupera la función [original.
El hecho de que las integrales son las funciones inversas y que cuando son continuas se puede derivarlas para tener la función original, indica que tenemos innumerables formas de calcular cualquier función, que en el futuro es algo muy importante en nuestra carrera.
Ejemplo 1
Hallar la derivada de
Notamos que {t=x}, por lo que su diferencial {dt = dx}
Aplicando el teorema fundamental del cálculo tenemos
Ejemplo 2
Hallar la derivada de
Notamos que {t=x^{2}}, por lo que su diferencial {dt = 2x\, dx}
Aplicando el teorema fundamental del cálculo tenemos
Fuentes
https://www.superprof.es/apuntes/escolar/matematicas/calculo/integrales/teorema-fundamental-del-calculo-y-de-la-media.html
http://www.dma.fi.upm.es/recursos/aplicaciones/calculo_infinitesimal/web/integracion2/html/tfundamental.html