Please enable JavaScript.
Coggle requires JavaScript to display documents.
KJGQx6UN_400x400, INSTITUTO TECNOLÓGICO SUPERIOR DE ZONGOLICA
IGE
…
La econometría se ocupa de la aplicación de métodos estadísticos a la economía. A diferencia de la estadística económica, que es principalmente datos estadísticos, la econometría se distingue por la unificación de teoría económica, instrumentos matemáticos y metodología estadística. La econometría se ocupa de:
Estimar relaciones económicas,
Confrontar la teoría económica con los datos y contrastar hipótesis relativas al comportamiento económico
-
Debe tenerse en cuenta que el modelo de regresión lineal clásico es una abstracción o construcción teórica, pues los supuestos que lo fundamentan pueden llegar a ser considerados rigurosos o poco realistas, pero en la medida en que se progrese en conocimientos, estos supuestos pueden llegar a ser modificados sobre la marcha.
MÍNIMOS CUADRADOS ORDINARIOS (MCO) El método de mínimos cuadrados es uno que se emplea para estimar o predecir el valor de una variable en función de valores de otra variable, teniendo como antecedente el comportamiento de un conjunto de datos del mismo tipo. El problema de la predicción lineal se reduce al de ajustar una línea recta a un conjunto de puntos localizados en un diagrama de dispersión. El diagrama de dispersión sirve de base para conocer el tipo de curva que mejor se ajusta a los datos, si esta curva resulta una recta, se llama recta de ajuste. La recta de ajuste es una línea recta que hace mínima la suma de las desviaciones de cada punto con respecto a la línea recta, esta recta se le conoce como recta de mínimos cuadrados
SUPUESTOS El análisis de regresión más sencillo para el caso de dos variables, también se le conoce como modelo de regresión simple, modelo de regresión bivariado o como modelo de regresión de dos variables. Este modelo no es de uso amplio en la econometría aplicada, pero sirve para ilustrar las ideas básicas del mismo. El análisis de regresión simple permite estimar o predecir el valor medio o promedio (poblacional) de la variable dependiente y con base en los valores fijos o conocidos de la variable explicativa x.
ESTIMADORES El problema de predicción lineal se reduce al de ajustar una línea recta a un conjunto de puntos localizados a un diagrama de dispersión. El procedimiento que más se emplea para el ajuste de una recta a un conjunto de puntos se conoce como método de mínimos cuadrados ordinarios (MCO).
PRUEBAS DE HIPÓTESIS Una estimación puntual obtenida de determinada muestra no proporciona suficiente información para evaluar, por ejemplo, una teoría económica. Esta limitación se supera al aplicar intervalos de confianza que forma parte de la teoría de la estimación, siendo esta una rama de la estadística clásica.
PREDICCIÓN En la mayoría de los casos, si la relación está bien especificada, no se podrá obtener información suplementaria sobre el modelo, de modo que sólo se debe conformar con un conjunto de estimaciones de los parámetros poco fiables. No obstante, la información estimada sigue siendo satisfactoria para propósitos de predicción. La predicción puede ser individual o media.
El modelo clásico de regresión lineal es en el que los términos de perturbación ui tienen todos la misma varianza. Si no se cumple este supuesto, se presenta el fenómeno de heterocedasticidad.
CAUSAS DE LA HETEROCEDASTICIDAD El supuesto de homocedasticidad, introducido en la Unidad 2, plantea que la varianza de las perturbaciones ui, de la función de regresión poblacional, tienen la mis
ESTIMACIÓN DE MCO CON HETEROCEDASTICIDAD
la estimación de mínimos cuadrados ordinarios y se consideraron bajo los supuestos de Guss-Marcov que los estimadores son el mejor estimado lineal insesgado (MELI) donde la varianza mínima se le conoce como un estimador eficiente.
MÉTODOS DE CORRECCIÓN Antes de referirse a los métodos de corrección, es conveniente mencionar uno de los diversos contrastes para la determinación de la heterocedasticidad.
Un modelo de regresión lineal ajustado supone la detección de heterocedasticidad, la cual puede ser probada por exámenes informales, como las gráficas, y por análisis formales, como el de Goldfeld y Quandt
En un modelo de regresión lineal se introducen variables cuantitativas, de las cuales se puede obtener información de alguna base de datos, de esta manera, se tienen datos acerca de la variable dependiente e independiente. La variable dependiente no sólo se encuentra influenciada por una variable cuantitativa, sino que también está determinada por variables cualitativas
VARIABLES CUALITATIVAS En un análisis de regresión, normalmente, la variable dependiente se encuentra influenciada por variables que se pueden cuantificar fácilmente mediante una escala bien definida, cabe mencionar que en un trabajo empírico se deben incluir variables de tipo cualitativo
APLICACIÓN DE LAS VARIABLES CUALITATIVAS Al igual que las variables cuantitativas, las variables dummy se pueden utilizar con facilidad en los modelos de regresión, incluso los modelos de regresión pueden incluir como variables explicativas sólo variables cualitativas.
cuando un modelo solo incluye variables dummy como variables explicativas se llama modelo de análisis de la varianza (ANOVA) y cuando un modelo incluye variables cuantitativas y cualitativas se conoce como modelo de análisis de la covarianza (ANCOVA)
El modelo clásico de regresión lineal en el que los errores y perturbaciones ui entran en la función de regresión poblacional, se encuentran bajo el supuesto de que son aleatorios o no correlacionados, cuando se viola este supuesto es porque existe autorrelación o correlación serial.
CAUSAS DE LA AUTOCORRELACIÓN Es la correlación entre los términos de error de un modelo de regresión. Su efecto es que invalida uno de los supuestos que fundamentan el procedimiento de mínimos cuadrados ordinarios y, por lo tanto, hace necesario una modificación de tal procedimiento. Con frecuencia se le llama también correlación serial, ambos términos se utilizan de manera indistinta
ESTIMACIÓN DE MCO CON AUTOCORRELACIÓN Se considera el modelo de regresión con 2 variables para presentar las ideas básicas del presente análisis, considerando donde t corresponde a los datos u observaciones en el periodo t, en este caso se utilizan series de tiempo.
MÉTODOS DE CORRECCIÓN La autocorrelación es un problema serio, por lo cual es necesario detectar su presencia en una situación determinada, por lo cual existen diferentes pruebas de correlación serial que se utilizan comúnmente, y básicamente son instrumentos estadísticos y gráficos.
Una de las categorías más importantes de los modelos de regresión lineal es la estimación de series de tiempo, las cuales son principalmente aplicables en series económicas.
ESTIMACIÓN Los modelos de series de tiempo son útiles en el análisis empírico, y se estiman con facilidad mediante mínimos cuadrados ordinarios, son diversos los métodos que se pueden emplear para la estimación de series de tiempo.
PREDICCIÓN La información presente y pasada permite hacer una estimación acerca del futuro, a esto se le llama predicción. En el campo de la economía es ampliamente utilizada, mediante series temporales, pues permite planificar o prever el comportamiento de una variable explicativa.
MODELO DE REGRESIÓN CON SERIES DE TIEMPO Una serie de tiempo es una secuencia cronológica de observaciones de una variable o conducta particular durante un periodo determinado. Una característica de los datos de las series de tiempo que los distingue de los de corte transversal es su orden temporal.
INSTITUTO TECNOLÓGICO SUPERIOR DE ZONGOLICA
IGE
ECONOMETRÍA
PRESENTA:
AGUILAR MARTINEZ JUAN CARLOS
CAMACHO RAMIREZ ADELA ANAIS
TORRES MIRANDA KARLA ALEJANDRA
PROFESOR:
PD. ISAAC SAMCHEZ ANASTACIO
804 "B" MIXTO