RELACIONES ENTRE CONJUNTOS
Relación entre conjuntos: Es una comparación entre conjuntos según las cualidades que le asignemos, si es que existen.
Conjuntos iguales
Relación de igualdad: Se le llama conjuntos iguales o idénticos sí dos conjuntos A y B tienen los mismos elementos.
Se expresa así:
Sus propiedades son:
Reflexiva: Establece que toda cantidad o expresión es igual a sí misma
Simétrica: Consiste en poder cambiar el orden de los miembros sin que la igualdad se altere.
Transitiva: Enuncia que si dos igualdades tienen un miembro en común, los otros dos miembros también son iguales.
Conjuntos equivalentes
Relación de equivalencia: Se dice que dos conjuntos A y B son equivalentes cuando tiene correspondencia biunívoca, entre todos sus elementos
Se expresa así:
click to edit
Dos conjuntos iguales son equivalentes, pero dos conjuntos equivalentes no necesariamente son iguales.
Subconjuntos de un conjuntos
Relación de continencia: Se dice que un conjunto B es subconjunto de otro conjunto A sí todos sus elementos de B le pertenecen al conjunto A, entonces
Simbólicamente se escribe así:
Dos conjuntos A y B son iguales si el conjunto A está contenido en B y B está contenido en A, así
Subconjunto propio
Se dice que un conjunto A es subconjunto propio de un conjunto B, sí A no es solamente subconjunto de B, sino que A también sea diferente de B.
Se escribe así:
Propiedades
Reflexiva: Todo conjunto es subconjunto de sí mismo
Antisimétrica: Sí un conjunto le pertenece a un segundo conjunto y este segundo conjunto le pertenece al primero entonces dichos conjuntos son iguales.
Transitiva: Sí un primer conjunto está incluido en un segundo conjunto y este a su vez está incluido en un tercero, entonces el primer conjunto está incluido en el primer conjunto
Conjuntos disjuntos
Dos conjuntos A y B son disjuntos cuando no tienen elementos en común
Conjuntos comparables
Ocurre cuando un conjunto está incluido en otro
A y B son comparables cuando A está incluido en B o B esta incluido en A