Espelhos esféricos

cortando uma superfície esférica com um plano, obteremos duas partes, cada uma é denominada calota esférica

um espelho esférico é uma calota esférica que possui uma de suas faces espelhadas

se a superfície refletora é a interna, o espelho esférico é denominado côncavo

se a superfície refletora é a externa, o espelho é convexo

elementos geométricos

centro de curvatura (C): o centro da superfície esférica de onde foi retirada a calota

ângulo de abertura do espelho: é o ângulo a = ACB. As imagens fornecidas por um espelho esférico são mais nítidas quando a < 10°. Nessas condições, o espelho é chamado espelho esférico de Gauss

eixo principal: a reta definida pelos pontos C e V

raio de curvatura (R): o raio de curvatura da superfície esférica de onde foi retirada a calota. É a distância entre C e V

vértice (V): O polo da calota. É o ponto mais externo da calota

foco principal do espelho de Gauss (F): o ponto médio entre C e V

distância focal (f): a distância entre o foco F e o vértice V

relação entre f e R: f= R/2

um feixe de raios paralelos incide em um espelho esférico, paralelamente ao eixo principal

o feixe refletido é convergente no caso do espelho côncavo

o feixe refletido é divergente no caso do espelho convexo

os raios de luz que incidem em um espelho esférico paralelamente ao eixo principal refletem-se passando efetivamente pelo foco principal nos espelhos côncavos e passando pelo foco principal através de prolongamentos nos espelhos convexos

de acordo com o princípio da reversibilidade da luz: os raios de luz que incidem em um espelho esférico passando pelo foco principal F efetivamente (no espelho côncavo) ou passando pelo foco principal através de prolongamentos (no espelho convexo) são refletidos paralelamente ao eixo principal

imagens

espelho côncavo

espelho convexo

Objeto situado antes do centro de curvatura C

para qualquer posição do objeto real, a imagem é sempre virtual, direita e menor que o objeto

imagem é real, invertida e menor que o objeto

Objeto situado entre o centro de curvatura C e o foco principal F

imagem é real, invertida e maior que o objeto

Objeto situado entre o foco principal F e o vértice V

imagem é virtual, direita e maior que o objeto

equação de Gauss

1/F = 1/p + 1/p'

p e p' são as distâncias ao espelho do objeto e da imagem, respectivamente, e f a distância focal

essas distâncias p e p' são precedidas de um sinal positivo se a natureza do objeto ou da imagem for real ou de um sinal negativo se a natureza for virtual.

a distância focal f de um espelho côncavo é positiva e a de um espelho convexo, negativa

aumento linear transversal A

permite saber se uma imagem é direita ou invertida e se é maior ou menor que um objeto

A= i/o = -p/p'

sejam o e i as alturas do objeto e da imagem, respectivamente; essas alturas são precedidas de um sinal: positivo, se o objeto ou a imagem estão acima do eixo principal; negativo, quando estão abaixo desse eixo.

se A é positivo, i e o têm mesmo sinal e a imagem é direita.

se A é negativo, i e o têm sinais opostos e a imagem é invertida