Hyperbolic functions

Identities

sinh (x + y) = sinh (x) cosh (y) + cosh (x) sinh (y)

cosh (x + y) = cosh (x) cosh (y) + sinh (x) sinh (y)

Reciprocal

coth^2 (x) - 1 = cosech^2 (x)

1 - tanh^2 (x) = sech^2 (x)

Calculus

Differentiation

d/dx cosh x = sinh x

d/dx cosech x = -cosech (x) coth (x)

d/dx sech x = -sech (x) tanh (x)

d/dx coth x = -cosech^2 x

Graphs

sinh x
CNX_Calc_Figure_06_09_001 (2)

cosh x
CNX_Calc_Figure_06_09_001 (3)

tanh x
CNX_Calc_Figure_06_09_001 (4)

arcsinh x
CNX_Calc_Figure_06_09_001

arcosh x
CNX_Calc_Figure_06_09_001 (6)

arctanh x
CNX_Calc_Figure_06_09_001 (5)

Double angle

tanh (2x) = 2tanh (x)/1+tanh^2 (x)

d/dx sinh x = cosh x

Integration

tanh x dx = ln|cosh x| + c

d/dx tanh x = sech^2 x

∫ coth x dx = ln|sinh x| + c