Trigonometrinin Tarihçesi

Kelime Kökenleri

Oluşum Süreci

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği (Rhind Matematiksel Papirüsü) ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı.

Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı.

Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı.

Modern "sinüs" kelimesi, "koy (bay)", "göğüs (bosom)" veya "kıvrım (fold)" anlamına gelen Latince sinus kelimesinden türetilmiştir; dolaylı olarak, Hintçe, Farsça ve Arapça aktarım yoluyla, Yunanca khordḗ "yay-teli (bow-string), akor (chord)" teriminden türetilmiştir.

Özellikle Fibonacci'nin sinus rectus arcus, sinüs terimini oluşturmada etkili oldu.

Gelişimi

Antik Yakın Doğu

Özet

Klasik Antik Çağlar

Hint matematiği

Trigonometri, MÖ 2000'lerde Hindistan'da gelişmeye başlamıştır ve orada trigonometrik işlemlerin temelini oluşturan birkaç temel kavram ortaya çıkarılmıştır. Bu kavramlar, üçgenlerin açılarının ve yüksekliklerinin hesaplanmasına olanak tanıyan "çevresel oranlar" ve "çevresel orantılar" olarak adlandırılmıştır. Daha sonra, MÖ 600'lerde Babil matematikçileri bu kavramları daha da geliştirip, üçgenlerin diğer özelliklerini de hesaplamaya yönelik birçok formül ortaya çıkarmışlardır.


Trigonometri, daha sonra eski Yunan matematikçilerinin de ilgisini çekmiş ve bu konuda çalışmalar yapılmaya başlanmıştır. Özellikle Euclid ve Archimedes gibi ünlü matematikçiler, trigonometrinin temel kavramlarını geliştirip birçok önemli teorem ortaya çıkarmışlardır. Bu teoremler sayesinde üçgenlerin alanları ve diğer özellikleri hesaplanabilme olanağı doğmuştur. Daha sonra, trigonometri, Roma ve İslam matematikçileri tarafından da araştırılmaya devam edilmiş ve bu konuda büyük ilerlemeler kaydedilmiştir. Günümüzde ise trigonometri, pek çok alanda kullanılmakta ve özellikle mühendislik, fizik ve astronomi gibi alanlarda büyük önem taşımaktadır.

click to edit

Eski Yunan ve Helenistik matematikçiler kirişi kullandılar. Çember üzerinde bir çember ve bir yay verildiğinde, kiriş, yayın altında kalan doğrudur. Bir kirişin dikey açıortayı çemberin merkezinden geçer ve açıyı ikiye böler. İkiye bölünmüş kirişin yarısı, ikiye bölünmüş açının yarısının sinüsüdür, yani,

image

ve sonuç olarak sinüs fonksiyonu, yarı-kiriş olarak da bilinir. Bu ilişki nedeniyle, günümüzde bilinen bazı trigonometrik özdeşlikler ve teoremler Helenistik matematikçiler tarafından da biliniyordu, ancak eşdeğer kiriş biçiminde.

Trigonometrinin ilk ve çok önemli gelişmelerinden bazıları Hindistan'da gerçekleşti. Siddhanta olarak bilinen 4.–5. yüzyıldan etkileyici eserler (beş tane olmasına rağmen bunlardan en önemlisi Surya Siddhanta[19] idi) ilk önce sinüsü yarım açı ile yarım kiriş arasındaki modern ilişki olarak tanımlarken, aynı zamanda kosinüs, versinüs ve ters sinüsü tanımladı.[20] Kısa süre sonra, başka bir Hint matematikçi ve astronom olan Aryabhata (MS 476-550), Aryabhatiya adlı önemli bir çalışmada Siddhantas'ın ilerlemelerini topladı ve genişletti.[21] Siddhantas ve Aryabhatiya, 0° ila 90° arasındaki 3,75° aralıklarla 4 ondalık basamak doğrulukta, hayatta kalan en eski sinüs değerleri ve versinüs (1 - kosinüs) değerleri tablolarını içerir.[22] Onlar, sinüs için jya, kosinüs için kojya, ters sinüs için utkrama-jya ve versinüs için otkram jya sözcüklerin kullandılar. Jya ve kojya kelimeleri, yukarıda açıklanan bir yanlış tercüme sonrasında nihayetinde sırasıyla sinüs ve kosinüs haline geldi.

click to edit

Mısırlılar ise MÖ 2. binyılda Piramitleri inşa etmek için ilkel bir trigonometri biçimi kullandılar.[6] Mısırlı yazar Ahmes (MÖ 1680-1620) tarafından yazılan Rhind Matematik Papirüsü, trigonometri ile ilgili aşağıdaki problemi içerir:

"Bir piramit 250 arşın (cubits) yüksekliğinde ve tabanının kenarı 360 arşın uzunluğunda ise, onun seked'i (dik piramidin üçgen yüzlerinin eğimini tanımlayan terim) nedir?"

Ahmes'in probleme çözümü, piramidin tabanının yarısının yüksekliğine oranı veya yüzünün yükselme oranıdır. Başka bir deyişle, seked için bulduğu miktar, piramidin tabanına ve yüzüne olan açının kotanjantıdır.

Çin Matematiği

Çin'de, Aryabhata'nın sinüs tablosu, Tang Hanedanlığı döneminde MS 718'de derlenen Kaiyuan Zhanjing'in Çin matematik kitabına çevrildi. Çinliler katı geometri, binom teoremi ve karmaşık cebirsel formüller gibi matematiğin diğer alanlarında başarılı olsalar da, trigonometrinin erken biçimleri daha önceki Yunan, Helenistik, Hint ve İslam dünyalarında olduğu kadar yaygın olarak takdir edilmedi. Bunun yerine, erken Çinliler, chong cha olarak bilinen deneysel bir ikame kullandılar, oysa sinüs, tanjant ve sekant kullanımında düzlem trigonometrinin pratik kullanımı biliniyordu. Bununla birlikte, Çin'deki bu embriyonik trigonometri durumu, Çinli matematikçilerin takvim bilimi ve astronomik hesaplamalarda küresel trigonometri ihtiyacına daha fazla vurgu yapmaya başladığı Song Hanedanlığı döneminde (960-1279) yavaş yavaş değişmeye ve ilerlemeye başladı. Birden çok konuda bilgili Çinli bilim insanı, matematikçi ve memur Shen Kuo (1031-1095), kiriş ve yayların matematiksel problemlerini çözmek için trigonometrik fonksiyonlar kullandı. Victor J. Katz, Shen'in "kesişen çemberler tekniği" formülünde, bir yay yaklaşımı yarattığını yazar; d çapı, sagitta v ve yayı oluşturan kirişin c uzunluğu verildiğinde bir çemberin s yayının uzunluğunu aşağıdaki şekilde yaklaşık olarak hesapladı.

image

Orta çağ İslam dünyası

VIII. yüzyılda, Yakın ve Orta Doğu ülkelerinden bilim adamları, eski Yunan ve Hint matematikçiler ile astronomların eserleri ile tanıştılar. Önceki eserler daha sonra Orta çağ İslam dünyasında, çoğunlukla Fars ve Arap kökenli Müslüman matematikçiler tarafından çevrildi ve genişletildi. 8. yüzyılda İbrahim el-Fezari ve Yakub bin Tarık gibi büyük alimler bu eserleri Arapçaya çevirmekle uğraştılar. Sonra onlar ve takipçileri bu teoriler üzerinde aktif olarak yorum yapmaya ve kendi fikirleri ile yeni teoriler geliştirmeye başladılar. Bunlar, Helenistik matematikte olduğu gibi Menelaus teoreminin uygulanmasına, trigonometri konusunu tam dörtgene bağımlılıktan kurtaran çok sayıda teoremi dile getirdi. E. S. Kennedy'ye göre, İslam matematiğindeki bu gelişmeden sonra, "ilk gerçek trigonometri, ancak o zaman çalışmanın nesnesinin küresel veya düzlemsel üçgen, kenarları ve açıları haline gelmesi anlamında ortaya çıktı."

Avrupa Rönesansı ve sonrası

1342'de Gersonides olarak bilinen Levi ben Gershon, özellikle düzlem üçgenler için sinüs yasasını kanıtlayan ve beş rakamlı sinüs tabloları veren "On Sines, Chords and Arcs" adlı eseri yazdı.

Basitleştirilmiş bir trigonometrik tablo olan "toleta de marteloio", 14-15. yüzyıllar boyunca Akdeniz'deki denizciler tarafından seyrüsefer rotalarını hesaplamak için kullanıldı. 1295 yılında Mayorka'dan Ramon Llull tarafından tanımlanmış ve Venedikli kaptan Andrea Bianco'nun 1436 atlasında düzenlenmiştir.