Please enable JavaScript.
Coggle requires JavaScript to display documents.
Estatística, Maria Clara Souza e Silva, estatc3adstica, 2, 2, 2 - Coggle…
Estatística
Moda
Exemplo
Em uma escola de música, as turmas são formadas por apenas 8 alunos. Na turma “A”, estão matriculados Mateus, Mateus, Rodrigo, Carolina, Ana, Ana, Ana e Teresa.
Observe que há dois meninos chamados de Mateus e três meninas chamadas de Ana. O nome que mais se repete é Ana e, por isso, é a moda desse conjunto de dados.
Agora um exemplo com números: em uma escola de música, os oito alunos da turma “A” possuem as seguintes idades: 12 anos, 13 anos, 13 anos, 12 anos, 11 anos, 10 anos, 14 anos e 11 anos.
Perceba que as idades 11, 12 e 13 repetem-se o mesmo número de vezes e nenhuma idade aparece mais que essas três. Nesse caso, o conjunto possui três modas (11, 12 e 13) e é chamado de trimodal.
É chamado de moda o dado mais frequente de um conjunto. Veja um exemplo:
Mediana
Se o conjunto de informações for numérico e estiver organizado em ordem crescente ou decrescente, a sua mediana será o número que ocupa a posição central da lista. Considere que a escola de música já citada possui nove professores e que suas idades são:
Exemplo:
32 anos, 33 anos, 24 anos, 31 anos, 44 anos, 65 anos, 32 anos, 21 anos e 32 anos
Para encontrar a mediana das idades dos professores, devemos organizar a lista de idades em ordem crescente:
21, 24, 31, 32, 32, 32, 33, 44 e 65
Observe que o número 32 é o quinto. À sua direita, existem outras 4 idades, assim como à esquerda. Logo, 32 é a mediana da lista das idades dos professores.
Se a lista possuir um número par de informações, para encontrar a mediana (Ma), devemos encontrar os dois valores centrais (a1 e a2) da lista, somá-los e dividir o resultado por 2.
Ma= a1 + a2
Se as idades dos professores fossem 19 anos, 19 anos, 18 anos, 22 anos, 44 anos, 45 anos, 46 anos, 46 anos, 47 anos e 48 anos, a lista crescente com as duas medidas centrais seria:
18, 19, 19, 22, 44, 45, 46, 46, 47, 48
Observe que a quantidade de informações à direta e à esquerda desses dois números é exatamente a mesma. A mediana desse conjunto de dados é, portanto:
Md= a1+a2
Ma= 44+45
Ma=89
Ma = 44,5 anos
Média
mais precisamente chamada de média aritmética simples, é o resultado da soma de todas as informações de um conjunto de dados dividida pelo número de informações que foram somadas. A média aritmética simples entre 14, 15 e 25, por exemplo, é a seguinte:
Exemplo
M = 14 + 15 + 25
3
Como há três dados na lista, dividimos a soma desses dados pelo número 3. O resultado é:
M= 54
3
M = 18
Estatística é a ciência que se utiliza das teorias probabilísticas para explicar a frequência da ocorrência de eventos, tanto em estudos observacionais quanto em experimentos para modelar a aleatoriedade e a incerteza de forma a estimar ou possibilitar a previsão de fenômenos futuros, conforme o caso.
Algumas práticas estatísticas incluem, por exemplo, o planejamento, a sumarização e a interpretação de observações. Dado que o objetivo da estatística é a produção da melhor informação possível a partir dos dados disponíveis, alguns autores sugerem que a estatística é um ramo da teoria da decisão.
Maria Clara Souza e Silva
8° ano
2
2
2