Please enable JavaScript.
Coggle requires JavaScript to display documents.
Unit 4 - Coggle Diagram
Unit 4
Unit 4: Polar Coordinates & Conic Sections
Lesson 1: Introduction to Polar Coordinates (极坐标)
Coordinate: how to find a point in a space
Rectangular coordinates (直角坐标) (x, y)
Polar coordinates (r, θ)
Rectangular to Polar:
Given y=f(x), find r=g(θ)
Substitute y=r sinθ, x=r cosθ
Given r=g(θ), find y=f(x)
Substitute r=√(x^2+y^2 ),tan〖θ=y/x, sin θ=y/r,cos〖θ=x/r, … 〗 〗
Lesson 2: Parabolas and Hyperbolas
Conics (圆锥曲线) general equation
Ax^2+Bxy+Cy^2+Dx+Ey+F=0
Parabolas: Either A=0, or C=0, not both
Regular and sideway, vertex (h, k)
y=a(x−h^2+k
x=a(y−k)^2+h
Rectangular Hyperbolas: AC=−1
Horizontal: (x−h^2/a^2 −(y−k)^2/b^2 =1
Vertical: (y−k)^2/a^2 −(x−h^2/b^2 =1
What is a and b on a graph?
Lesson 3: Circles and Ellipses
Circles: A=C
(x−h^2+(y−k)^2=r^2, or (x−h^2/r^2 +(y−k)^2/r^2 =1
Ellipses: AC>0, A≠C
Horizontal Ellipse a>b: (x−h^2/a^2 +(y−k)^2/b^2 =1
Vertical Ellipse a>b: (y−k)^2/a^2 +(x−h^2/b^2 =1
Major axis and Minor axis
Lesson 4: Polar Graphs and Rose Curves
Lesson 5: Polar graph and cardioids
PreCalc Index