Please enable JavaScript.
Coggle requires JavaScript to display documents.
雙極性電晶體 BJT (主要參數 (電流放大參數 (射極擴散到基極的電子,大部分都能夠漂移到集極,剩下的電子與基極區域的電洞發生載子複合。成功抵達集…
雙極性電晶體 BJT
主要參數
電流放大參數
射極擴散到基極的電子,大部分都能夠漂移到集極,剩下的電子與基極區域的電洞發生載子複合。成功抵達集極的電子濃度占射極擴散出來的電子總濃度的比值,是衡量雙極性電晶體效率的一項重要指標。由於射極區域為重摻雜,基極區域為輕摻雜,所以從射極被注入到基極的電子濃度大於從基極注入到射極的電洞濃度。下面將討論雙極性電晶體在電路中以射極或基極為公共端時的電流放大倍數。
-
極限電流和極限電壓
當集極電流增大到一定數值後,雖然不會造成雙極性電晶體的損壞,但是電流增益會明顯降低。為了使電晶體按照設計正常工作,需要限制集極電流的數值。除此之外,由於雙極性電晶體具有兩個PN接面,因此它們的逆向偏壓電壓不能夠過大,防止PN接面逆向擊穿。
-
-
-
結構
一個雙極性電晶體由三個不同的摻雜半導體區域組成,它們分別是射極區域、基極區域和集極區域。這些區域在NPN型電晶體中分別是N型、P型和N型半導體,而在PNP型電晶體中則分別是P型、N型和P型半導體。每一個半導體區域都有一個引腳端接出,通常用字母E、B和C來表示射極、基極和集極。
NPN型
PN型電晶體是兩種類型雙極性電晶體的其中一種,由兩層N型摻雜區域和介於二者之間的一層P型摻雜半導體(基極)組成。輸入到基極的微小電流將被放大,產生較大的集極-射極電流。當NPN型電晶體基極電壓高於射極電壓,並且集極電壓高於基極電壓,則電晶體處於順向放大狀態。
PNP型
雙極性電晶體的另一種類型為PNP型,由兩層P型摻雜區域和介於二者之間的一層N型摻雜半導體組成。流經基極的微小電流可以在射極端得到放大。也就是說,當PNP型電晶體的基極電壓低於射極時,集極電壓低於基極,電晶體處於順向主動區。
-
發展及應用
-
-
1950年代和1960年代,鍺電晶體的使用多於矽電晶體。矽電晶體截止電壓通常為0.5至 1V,鍺電晶體的截止電壓更小,通常約0.2V,這使得鍺電晶體適用於某些應用場合例如高靈敏度的設備。在電晶體的早期歷史中,曾有多種雙極性電晶體的製造方法被開發出來。
基本原理
NPN型雙極性電晶體可以視為共用陽極的兩個二極體接合在一起。在雙極性電晶體的正常工作狀態下,射極接面(基極與射極之間的PN接面)處於順向偏壓狀態,而集極接面(基極與集極之間的PN接面)則處於逆向偏壓狀態。在沒有外加電壓時,射極接面N區的電子(該區域的多數載子)濃度大於P區的電子濃度,部分電子將擴散到P區。
分析方法
集極-射極電流可以視為受基極-射極電流的控制,這相當於將雙極性電晶體視為一種「電流控制」的器件。還可以將它看作是受射極接面電壓的控制,即將它看做一種「電壓控制」的器件。事實上,這兩種思考方式可以通過基極-射極接面上的電流電壓關係相互關聯起來,而這種關係可以用PN接面的電流-電壓曲線表示。
-