TERMODINAMIKA
PROSES PROSES TERMODINAMIKA
ISOTERMAL
W= ππ T ln π2/π1
ISOKHORIK
P1/T1= P2/T2
ISOBARIK
βP = 0
W = P.βV
βU=0
ADIABATIK
KAPASITAS KALOR
KAPASITAS KALOR VOLUME TETAP
KAPASITAS KALOR TEKANAN TETAP
Cv = Qv/βT
Cp = Qp/βT
C = Q/βT
Q = C.βT
PADA GAS DIATOMIK
SUHU RENDAH ( Β± 250 K)
Qv = 3/2 ππ
βT
Cv = 3/2 ππ
Cp = 5/2 ππ
Y = πΆπ/πΆπ£=1,67
SUHU SEDANG ( Β± 500 K)
Qv = 5/2 ππ
βT
Cv =5/2 ππ
Cp = 7/2 ππ
Y = πΆπ/πΆπ£=1,4
SUHU TINGGI ( Β± 750 K )
βU = 7/2 ππ
βT
Cv =7/2 ππ
Cp = 9/2 ππ
Y = πΆπ/πΆπ£=1,28
FORMULASI KELVIN PLANCK
π MAX = (1 - T1/T2) x 100%
ENTROPI
ΞS = Q/T
MESIN KALOR
π=w/Q1
atau
π=1βπ2/π1
EFISIENSI MESIN KARNOT
π=π/π1 π₯100%
MESIN PENDINGIN
π=1βπ2/π1 π₯100%
πΆπ=π2/π
atau
πΆπ=π2/(π1βπ2)
jika mesin pendingin ideal πΆπ=π2/(π1βπ2)
P1V1= P2V2
W = -3/2 ππ
(T2-T1)
W = 3/2 ππ
(T1-T2)
HUKUM 1 TERMODINAMIKA
Q =βU + W
Q = W
βV = 0, W = 0
βU = 1/2 ππ βT
Q = βU + W
Y = Cp/Cv
HUBUNGAN Cv dan Cp
Cp-Cv = pβV/βT
PADA GAS MONOATOMIK
Qv =3/2 ππ
βT
Cv =3/2 ππ
βT/ βT = 3/2 ππ
Cp = Cv + ππ
= 3/2 ππ
+ ππ
=5/2 ππ
Y = πΆπ/πΆπ£= 5/2 ππ
/ 3/2 ππ
= 5/3 = 1,67
FORMULASI CLAUSIUS
π = (T1/T2-1) x 100%
W = Q2 (T1/T2 - 1)
Q = βU