TERMODINAMIKA

PROSES PROSES TERMODINAMIKA

ISOTERMAL

W= 𝑛𝑅T ln 𝑉2/𝑉1

ISOKHORIK

P1/T1= P2/T2

ISOBARIK

βˆ†P = 0

W = P.βˆ†V

βˆ†U=0

ADIABATIK

KAPASITAS KALOR

KAPASITAS KALOR VOLUME TETAP

KAPASITAS KALOR TEKANAN TETAP

Cv = Qv/βˆ†T

Cp = Qp/βˆ†T

C = Q/βˆ†T
Q = C.βˆ†T

PADA GAS DIATOMIK

SUHU RENDAH ( Β± 250 K)

Qv = 3/2 𝑛𝑅 βˆ†T
Cv = 3/2 𝑛𝑅
Cp = 5/2 𝑛𝑅
Y = 𝐢𝑝/𝐢𝑣=1,67

SUHU SEDANG ( Β± 500 K)

Qv = 5/2 𝑛𝑅 βˆ†T
Cv =5/2 𝑛𝑅
Cp = 7/2 𝑛𝑅
Y = 𝐢𝑝/𝐢𝑣=1,4

SUHU TINGGI ( Β± 750 K )

βˆ†U = 7/2 𝑛𝑅 βˆ†T
Cv =7/2 𝑛𝑅
Cp = 9/2 𝑛𝑅
Y = 𝐢𝑝/𝐢𝑣=1,28

FORMULASI KELVIN PLANCK

πœ‚ MAX = (1 - T1/T2) x 100%

ENTROPI

Ξ”S = Q/T

MESIN KALOR

πœ‚=w/Q1
atau
πœ‚=1βˆ’π‘„2/𝑄1

EFISIENSI MESIN KARNOT

πœ‚=π‘Š/𝑄1 π‘₯100%

MESIN PENDINGIN

πœ‚=1βˆ’π‘‡2/𝑇1 π‘₯100%

𝐢𝑝=𝑄2/π‘Š
atau
𝐢𝑝=𝑄2/(𝑄1βˆ’π‘„2)

jika mesin pendingin ideal 𝐢𝑝=𝑇2/(𝑇1βˆ’π‘‡2)

P1V1= P2V2
W = -3/2 𝑛𝑅(T2-T1)
W = 3/2 𝑛𝑅(T1-T2)

HUKUM 1 TERMODINAMIKA

Q =βˆ†U + W

Q = W

βˆ†V = 0, W = 0

βˆ†U = 1/2 𝑛𝑅 βˆ†T

Q = βˆ†U + W

Y = Cp/Cv

HUBUNGAN Cv dan Cp

Cp-Cv = pβˆ†V/βˆ†T

PADA GAS MONOATOMIK

Qv =3/2 π‘›π‘…βˆ†T
Cv =3/2 π‘›π‘…βˆ†T/ βˆ†T = 3/2 𝑛𝑅
Cp = Cv + 𝑛𝑅 = 3/2 𝑛𝑅 + 𝑛𝑅=5/2 𝑛𝑅
Y = 𝐢𝑝/𝐢𝑣= 5/2 𝑛𝑅/ 3/2 𝑛𝑅 = 5/3 = 1,67

FORMULASI CLAUSIUS

πœ‚ = (T1/T2-1) x 100%
W = Q2 (T1/T2 - 1)

Q = βˆ†U