Please enable JavaScript.
Coggle requires JavaScript to display documents.
Turbine blade design (Airfoil design (Done) (Intro (Turbine blade (Goal,…
Turbine blade design
Airfoil design (Done)
Intro
Condition
Low velocity flow
thin
ez start
low strength
Thick
high strength
hard start
Turbine blade
CL
power
Goal
Increase lift
decrease drag
Conclude
thin airfoil
Literature review
Type airfoil
s-series
s833(Abdullah Muratoglu)
High lift
above 1.5
high lift/drag
s1223(Jonathan Aguilar)
high cl
2.795
lift/drag
39.59
Naca 5-series
NACA 63-218(Abdullah Muratoglu)
high Cp
high stall angle
Eppler foil(john)
E420
Cl
2.572
lift/drag
47.77
E423
Cl
2.497
Naca 5-series
high
Cp
Stall angle
low
Compare S833
Cl
1.3
Investigated
Commonly used
Show difference
Methodology
Q-blade
Airfoil design
Import data
Airfoil analysis
graph
Cl vs aoa
Cd vs aoa
Cl/Cd
How?
Re
Density
velocity
chord
miu
Mach
velocity of river
speed of sound of water
Result and discussion
graph
cl vs aoa
high lift
S1223
E423
low lift
S833
NACA
cl vs cd
High
S1223
E423
low
S833
NACA
cl/cd vs aoa
high
E423
S1223
low
S833
NACA
Conclusion
Airfoil chosen
E423
Lift- drag-ratio
Blade design and optimization
Introduction
Turbine blade
airfoil
blade design
opt length
chord
blade number
twist angle
Methodology
calculation
tsr value
chord
twist angle
optimization
twist
chord
Result and discusion
BEM simulation
Power vs Tsr
Power vs rpm
Cp vs Tsr
Multi-parameter siulation
variable
rpm (10- 80 rpm)
Power vs rpm
speed (0.1-1.6 m/s)
Power vs speed
fix
pitch angle