Trigonometric Functions
The Six Functions
Sum & Difference Formulas
Reciprocal, Quotient, Pythagorean, and Even-odd identities.
Double & Half Angle Formulas
Pythagorean Identities
Tangent (tan)
Double Angle Formulas
Even Odd Identities
Quotient Identities
Reciprocal Identities
Cosecant (csc)
Cosine (cos)
Secant (sec)
Sine (sin)
Cotangent (cot)
click to edit
click to edit
click to edit
Examples
(Numbers are in Degrees)(sqrt=square root) cos(75)=cos(45+30)
=cos(45)cos(30)-sin(45)sin(30)
=((sqrt2)/2) x ((sqrt3)/2)-((sqrt2)/2)(1/2)
=((sqrt6)-(sqrt2))/4
tan(pi/12)=tan((pi/3)-(pi/4)
=(tan(pi/3)-tan(pi/4))/(1+tan(pi/3)(tan(pi/4))
((sqrt3)-1)/(1+(sqrt3)(1)
=2-(sqrt3)
tan(105)
=(tan(60)+tan(45))/(1-tan(60)tan(45)
=((sqrt3)+1)/(1-(sqrt3)(1)
=(1+(sqrt3))/(1-(sqrt3)
Multiply by reciprocal
(1+2(sqrt3)+3)/(1-3)
(4+2(sqrt3))/(-2)
=-2-(sqrt3)
click to edit
Sum Formulas
cos(a+B)=cos(a)cos(B)-sin(a)sin(B)
sin(a+B)=sin(a)cos(B)+cos(a)sin(B)
tan(a+B)=(tan(a)+tan(B))/(1-tan(a)tan(B)
Difference Formulas
cos(a-B)=cos(a)cos(B)+sin(a)sin(B)
sin(a-B)=sin(a)cos(B)-cos(a)sin(B)
tan(a-B)=(tan(a)-tan(B))/(1+tan(a)tan(B)
Examples
Numbers are in radians
cos(a)=(-4/5) and sin(B)=(5/13)
=((-3/5)(12/13))-((-4/5)(5/13))
=(-16/65)
cos(x-pi)=cos(x)cos(pi)+sin(x)sin(pi)
=(cos(x))(-1)+(sin(x))(0)
=-cos(x)
(in degrees) tan(330-45)
=(tan(330)-tan(45))/(1+tan(330)tan(45))
=(-((sqrt3)/3)-1))/(1-((sqrt3)/3)(1)
=(-3-(sqrt3))/(3-(sqrt3))
Multiply by Reciprocal
=(-9-6(sqrt3)-3)/(9-3)
=-2-(sqrt3)
sin(x)=1/csc(x)
cos(x)=1/sec(x)
tan(x)=1/cot(x)
csc(x)=1/sin(x)
sec(x)=1/cos(x)
cot(x)=1/tan(x)
tan(x)-(sin(x))/(cos(x))
cot(x)=(cos(x)/sin(x))
sin^2(x)+cos^2(x)=1
1+tan^2(x)=sec^2(x)
1+cot^2(x)=csc^2(x)
sin(-x)=-sin(x)
cos(-x)=cos(x)
tan(-x)=-tan(x)
csc(-x)=-csc(x)
sec(-x)=sec(x)
cot(-x)=-cot(x)
(y/r)
(x/r)
(y/x)
(r/y)
(r/x)
(x/y)
sin2x=2sin(x)cos(x)
cos2x=cos^2(x)-sin^2(x)
cos2x=2cos^2(x)-1
cos2x=1-2sin^2(x)
tan2x=(2tan(x))/(1-tan^2(x))
Half Angle Identities
sin(x/2)=(+/-)(sqrt((1-cosx)/2))
cos(x/2)=(+/-)(sqrt((1+cosx)/2))
tan(x/2)=(+/-)(sqrt((1-cos(x))/(1+cos(x)))
tan(x/2)=(1-cos(x))/(sin(x))
tan(x/2)=(sin(x))/1+cos(x)
click to edit