Trigonometric Functions

The Six Functions

Sum & Difference Formulas

Reciprocal, Quotient, Pythagorean, and Even-odd identities.

Double & Half Angle Formulas

Pythagorean Identities

Tangent (tan)

Double Angle Formulas

Even Odd Identities

Quotient Identities

Reciprocal Identities

Cosecant (csc)

Cosine (cos)

Secant (sec)

Sine (sin)

Cotangent (cot)

click to edit

click to edit

click to edit

Examples

(Numbers are in Degrees)(sqrt=square root) cos(75)=cos(45+30)
=cos(45)cos(30)-sin(45)sin(30)
=((sqrt2)/2) x ((sqrt3)/2)-((sqrt2)/2)(1/2)
=((sqrt6)-(sqrt2))/4


tan(pi/12)=tan((pi/3)-(pi/4)
=(tan(pi/3)-tan(pi/4))/(1+tan(pi/3)(tan(pi/4))
((sqrt3)-1)/(1+(sqrt3)(1)
=2-(sqrt3)


tan(105)
=(tan(60)+tan(45))/(1-tan(60)tan(45)
=((sqrt3)+1)/(1-(sqrt3)(1)
=(1+(sqrt3))/(1-(sqrt3)
Multiply by reciprocal
(1+2(sqrt3)+3)/(1-3)
(4+2(sqrt3))/(-2)
=-2-(sqrt3)

click to edit

Sum Formulas
cos(a+B)=cos(a)cos(B)-sin(a)sin(B)
sin(a+B)=sin(a)cos(B)+cos(a)sin(B)
tan(a+B)=(tan(a)+tan(B))/(1-tan(a)tan(B)

Difference Formulas
cos(a-B)=cos(a)cos(B)+sin(a)sin(B)
sin(a-B)=sin(a)cos(B)-cos(a)sin(B)
tan(a-B)=(tan(a)-tan(B))/(1+tan(a)tan(B)

Examples

Numbers are in radians
cos(a)=(-4/5) and sin(B)=(5/13)


=((-3/5)(12/13))-((-4/5)(5/13))
=(-16/65)


cos(x-pi)=cos(x)cos(pi)+sin(x)sin(pi)
=(cos(x))(-1)+(sin(x))(0)
=-cos(x)


(in degrees) tan(330-45)
=(tan(330)-tan(45))/(1+tan(330)tan(45))
=(-((sqrt3)/3)-1))/(1-((sqrt3)/3)(1)
=(-3-(sqrt3))/(3-(sqrt3))
Multiply by Reciprocal
=(-9-6(sqrt3)-3)/(9-3)
=-2-(sqrt3)

sin(x)=1/csc(x)
cos(x)=1/sec(x)
tan(x)=1/cot(x)


csc(x)=1/sin(x)
sec(x)=1/cos(x)
cot(x)=1/tan(x)

tan(x)-(sin(x))/(cos(x))
cot(x)=(cos(x)/sin(x))

sin^2(x)+cos^2(x)=1
1+tan^2(x)=sec^2(x)
1+cot^2(x)=csc^2(x)

sin(-x)=-sin(x)
cos(-x)=cos(x)
tan(-x)=-tan(x)


csc(-x)=-csc(x)
sec(-x)=sec(x)
cot(-x)=-cot(x)

(y/r)

(x/r)

(y/x)

(r/y)

(r/x)

(x/y)

sin2x=2sin(x)cos(x)
cos2x=cos^2(x)-sin^2(x)
cos2x=2cos^2(x)-1
cos2x=1-2sin^2(x)
tan2x=(2tan(x))/(1-tan^2(x))

Half Angle Identities

sin(x/2)=(+/-)(sqrt((1-cosx)/2))
cos(x/2)=(+/-)(sqrt((1+cosx)/2))
tan(x/2)=(+/-)(sqrt((1-cos(x))/(1+cos(x)))
tan(x/2)=(1-cos(x))/(sin(x))
tan(x/2)=(sin(x))/1+cos(x)

click to edit