Lois usuelles
Bernoulli
X↪B(p)
Poisson
Uniforme
Géométrique
Binomiale
\(X\hookrightarrow\mathcal{U}\lbrack1,n\rbrack\)
\(X\hookrightarrow\mathcal{G}(p)\)
\(X\hookrightarrow \mathcal{B}(n,p)\)
\(X(\Omega)= \lbrack 0,n\rbrack\)
\(E(X)=np\)
\(V(X)=npq\)
\(P(X=k) = \binom{n}{k}p^kq^{n-k},\space \forall k\in\lbrack0,n\rbrack\)
click to edit
\(X(\Omega)= \lbrace 0,1\rbrace\)
\(\forall t\in\mathbb{R},\space G_X(t)=(q+pt)^n\)
\(E(X)=p\)
\(V(X)=pq\)
\(P(X=1) = p\)
\(E(X)=\frac {n+1}{2}\)
\(V(X)=\frac {n²-1}{12}\)
\(P(X=k) = \frac{1}{n},\space \forall k\in\lbrack1,n\rbrack\)
\(E(X)=\frac{1}{p}\)
\(V(X)=\frac{q}{p^2}\)
\(\forall k\in\mathbb{N^*},\space P(X=k) = pq^{k-1}\)
\(X\hookrightarrow\mathcal{P}(\lambda)\)
\(E(X)=V(X)=\lambda\)
\(\forall k\in\mathbb{N},\space P(X=k) = e^{-\lambda}\cdot\frac{\lambda^k}{k!}\)
\(X(\Omega)=\mathbb{N}\)
\(X(\Omega)= \mathbb{N^*}\)
\(X(\Omega)= \lbrack 1,n\rbrack\)
\(\forall\vert t\vert<\frac{1}{q},\space G_X(t)=\frac{pt}{1-qt}\)
click to edit
\(Soient, p\in\lbrack 0,1\rbrack,\space q=1-p\space et\space n\in\mathbb{N^*}\)
\(\forall t\in\mathbb{R},\space G_X(t)=\frac{pt}{1-qt}\)