Differensiallikninger

førsteordens

y+f(x)y=g(x)

\(y\cdot e^{\int f\left(x\right)dx}=\int\left(g\left(x\right)\cdot e^{\int f\left(x\right)dx}\right)dx\)

\(y'+\frac{k}{x}y=g\left(x\right)\)

\(y\cdot e^{k\ln\left(x\right)}=\int\left(g\left(x\right)\cdot e^{k\ln\left(x\right)}\right)dx\)

seperabel

\(g\left(y\right)\cdot y'=f\left(x\right)\)

\(y'=\frac{dx}{dy}\)

andreordens

\(ay''+by'+cy=0\)

reell

to løsninger

\(y=C\cdot e^{r_{1}x}+D\cdot e^{r_{2}x}\)

en løsning

\(y=e^{r_{1}x}\left(C+D\cdot x\right)\)

\(r=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\)

imaginær

\(r=p\pm q\sqrt{-1}\)

\(y=e^{px}\left(C\cdot\cos\left(qx\right)+D\cdot\sin\left(qx\right)\right)\)