Please enable JavaScript.
Coggle requires JavaScript to display documents.
Deep CNN (AlexNet (Five major contributions (Reducing overfitting (Data…
Deep CNN
AlexNet
架構
五個捲基層
三個全連接層
Five major contributions
Multiple GPUs
Local response normalization(LRN)
Nonliearity
Rectified Linear Units(ReLU)
To replace tanh or sigmoid
Faster convergence and lower gradient vanishing
Overlapping pooling
池化過程中相鄰兩點會重疊
Reducing overfitting
Data augmentation
人工收集資料較佳
成本高
dropout
如何產生五個最有可能的結果??
如何找前六相似的影像?
Filter 大小
5x5
11x11
3x3
Vgg
動機
探討CNN深度與準確率的關係
Vgg16
Vgg19
特色
Filter 都是3x3
Stacked convolurional
所使用的參數較少
非線性的成分較高
結論
LRN may not be effective
The deeperm the better
More 1x1 convolutional layers impove performance
filter 3x3
Spatial contest is important
GoogLeNet
Inception V1
架構
22 layers
不同數量層的inception間
加入maxpooling
降低解析度
Inception前
使用traditional convollutions
No fully connection layers
使用global average pooling
考慮到多張Feature map的平均
特色
Auxiliary classifiers
Inception module
choose mode filrers
3x3
5x5
取較大範圍的資訊
1x1
取較細微範圍的資訊
Max pooling
3x3
透過linear decrease 降低參數量
使用1x1 的filters
時間成本的考量
Vanishing gradients
intermediate layers
intermediate losses
RestNet
The deeper, the batter
Larger receptive field size
Higher non-linearity
Better fitting power
真理?
gradient exploding / vanishing
越深不見得越好!!
解決方法 ResNet!!
stacking residual modules
batch normalization
Global max pooling
Residual module
identity mapping 難以學習
學習residual
short cut connection
還原解析度
優點
Accelerate the training of deep networks
Reduce the risk of vanishing gradient
Less parameters in a single module
Increase depth of the network
Achieve higher accuracy in many vision applications
Results
applications
detection
segmentation
localization
Datasets
MS COCO
ImageNet
DenseNet
why call dense?
feature maps of all preceding layers are its input
advantages
Encourage feature reuse
Reduce the number of parameters
alleviate vanishing gradient
Strengthen feature propagation
聽不懂了