Differential Equation

Directional Fields

Linear

Exact

Bernoulli

Substitutions

Intervals of Validity (VIP)

Constant Coefficients

Real & Distinct Roots

Complex Roots

Repeated Roots

Reduction of Order

Undetermined Coefficients

Higher Order

Wronskian/Cramer's rule

Variation of Parameters

Higher Order

Laplace Transforms and Inverse

Higher Order

System of Differential Equations

Step Functions

Series

Higher Order

Separable

Characteristic Equation

Homogeneous

Particular

Slope Field

Drawing/Matching

y+P(t)y=Q(t)

\(N(y)\frac{dy}{dx}=M(x) \)

\(M(x,y)+N(x,y)\frac{dy}{dx}=0 \)

\(\psi_x=M(x,y)\)

\(\psi_y=N(x,y)\)

\(\psi_{xy}=\psi_{yx}\)

Short-cut method for \(y_p(t)\)

\(y'+p(x)y=q(x)y^n\)

\(n>2 || n<0\)

\(\psi=0\)

\(v(x)=\frac{y}{x} \)

\(v(x)=ay-bx \)

\(y(t)=c_1e^{kt}+c_2te^{kt}\)

\(y(t)=c_1e^{k_1t}+c_2te^{k_2t}\)

\(y(t)=c_1e^{at}cos(bt)+c_2e^{at}sin(bt)\)

\(v(t)=(1-n)y^{-n}y'\)

\(w=v'\)

\(w'=v''\)

\(y_2=vy_1\)

\(y(t)=y_h(t)+y_p(t)\)

\(v'_1(t)y_1(t)+v'_2(t)y_2(t)\)=0


\(v'_1(t)y'_1(t)+v'_2(t)y'_2(t)\)=g(t)

Guess

\(ke^{ax}\)

\(kx^n\)

\(kcos(wx) \) & \( ksin(wx)\)

\(ke^{ax}cos(wx)\) & \(ke^{ax}sin(wx)\)

\(Ae^{ax}\)

\(Ax^n+Bx^{n-1}+...+Jx+K\)

\(e^{ax}(Acos(wx)+Bsin(wx))\)

\(Acos(wx)+Bcos(wx)\)

\(y_p(t)=vy_h(t)\)