Calculus
Multivariate
Line Integral
∫Cf(x,y)ds=∫Cf(x(t),y(t))|r′(t)|dt
Partial Differentiation
Multiple Integration
Vector fields
Surface Integral
Green's Theorem
Stroke's Theorem
Divergence Theorem
Applications
Center of Mass
Mass/Charge Density
if \(z=g(x,y)\)
Chain Rule
Case 1
\(f(x,y), x=g(t), y=h(t)\)
Case 2
\(f(x,y), x=g(u,v), y=h(u,v)\)
\(\frac{df}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}\)
\(\frac{df}{du}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial u}\)
\(\frac{df}{dv}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial v}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial v}\)
Implicit Function Theorem
\(f(x,y)=0\)
\(\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_x}{F_y}\)
\(\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\)
\(\frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}\)
Gradient
Directional Derivative
\(\nabla f=\langle f_x, f_y, f_z\rangle\)
\(D_uf=\nabla f*u\)
Maximum and Minimum
Second Derivative Test
\(D=f_{xx}f_{yy}-(f_{xy})^2\)
\(D>0\) and \(f_{xx}>0\) -- local minimum
\(D>0\) and \(f_{xx}<0\) -- local maximum
\(D<0\) -- saddle point
Lagrange Multiplier
\(\nabla f = \lambda \nabla g\)
Double Integrals
Triple Integrals
Type 1
Type 2
Polar Coordinate
\(\int\int_D f(x,y) dydx\)
\(\int\int_D f(x,y) dxdy\)
\(\int\int_D f(rcos\theta, rsin\theta) rdrd\theta\)
\((\tilde x, \tilde y)\)
\(\tilde x = \frac{M_y}{m}\), \(\tilde y = \frac{M_x}{m}\)
\(M_x=\int\int_Dx\rho (x,y)dA\)
\(M_y=\int\int_Dy\rho (x,y)dA\)
\(m=\int\int_D\rho (x,y)dA\)
lamina
Surface Area
\(z=f(x,y)\)
\(\int\int_D \sqrt {1+z_x^2+z_y^2}dA\)
Regular
Cylindrical
Spherical
\(\int\int\int_E f(x,y,z) dzdydx\)
\(\int\int\int_E f(rcos\theta, rsin\theta, z) rdzdrd\theta\)
\(\int\int\int_E f(\rho sin\phi cos\theta, \rho sin\phi sin\theta, \rho cos\phi) \rho^2sin(\phi)d\rho d\phi d\theta)\)
\( \int_{C}F(x,y)\cdot dr=\int_C F(x(t), y(t))\cdot r'(t)dt\)
\( \int\int_{S}f(x,y,z)dS=\int\int_{D}f(x,y,z)\sqrt{1+g_x^2+g_y^2}dA\)
(upward orientation or normal changes sign)
\( \int\int_{S}F(x,y,z)\cdot dS=\int\int_{D}F(x,y,z) \cdot \langle
-g_x, -g_y, 1\rangle dA\)
(simple surface)
\( \int\int_{S}F(x,y,z)\cdot dS=\int\int_{D}F(x,y,z) \cdot ndA\)
else S is \(r(u,v)\)
\( \int\int_{S}f(x,y,z)dS=\int\int_{D}f(r(u,v))|r_u\times r_v|dA\)
\( \int\int_{S}F(x,y,z)\cdot dS=\int\int_{D}F(r(u,v)) \cdot (r_u\times r_v)dA\)
Fundamental Theorem of Line Integral
if \(F=\nabla f\)
\(\int_c F\cdot dr=f(r(b)) - f(r(a))\)
Closed piece-wise line C and
D is area inside (2D)
\(\oint_c F\cdot dr=\int\int_D(Q_x-P_y)dA\)
Deriving Scalar Potential Function \(f\)
Closed piece-wise line C (3D)
\(\oint_c F\cdot dr=\int\int_S curlF dS\)
Closed surface S
\(\int\oint_cF \cdot dS=\int\int\int_EdivFdV\)