Calculus

Multivariate

Line Integral

Cf(x,y)ds=Cf(x(t),y(t))|r(t)|dt

Partial Differentiation

Multiple Integration

Vector fields

Surface Integral

Green's Theorem

Stroke's Theorem

Divergence Theorem

Applications

Center of Mass

Mass/Charge Density

if \(z=g(x,y)\)

Chain Rule

Case 1
\(f(x,y), x=g(t), y=h(t)\)

Case 2
\(f(x,y), x=g(u,v), y=h(u,v)\)

\(\frac{df}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}\)

\(\frac{df}{du}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial u}\)


\(\frac{df}{dv}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial v}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial v}\)

Implicit Function Theorem
\(f(x,y)=0\)

\(\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}=-\frac{F_x}{F_y}\)

\(\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}\)


\(\frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}\)

Gradient

Directional Derivative

\(\nabla f=\langle f_x, f_y, f_z\rangle\)

\(D_uf=\nabla f*u\)

Maximum and Minimum

Second Derivative Test

\(D=f_{xx}f_{yy}-(f_{xy})^2\)


\(D>0\) and \(f_{xx}>0\) -- local minimum
\(D>0\) and \(f_{xx}<0\) -- local maximum
\(D<0\) -- saddle point

Lagrange Multiplier

\(\nabla f = \lambda \nabla g\)

Double Integrals

Triple Integrals

Type 1

Type 2

Polar Coordinate

\(\int\int_D f(x,y) dydx\)

\(\int\int_D f(x,y) dxdy\)

\(\int\int_D f(rcos\theta, rsin\theta) rdrd\theta\)

\((\tilde x, \tilde y)\)

\(\tilde x = \frac{M_y}{m}\), \(\tilde y = \frac{M_x}{m}\)

\(M_x=\int\int_Dx\rho (x,y)dA\)
\(M_y=\int\int_Dy\rho (x,y)dA\)

\(m=\int\int_D\rho (x,y)dA\)

lamina

Surface Area

\(z=f(x,y)\)


\(\int\int_D \sqrt {1+z_x^2+z_y^2}dA\)

Regular

Cylindrical

Spherical

\(\int\int\int_E f(x,y,z) dzdydx\)

\(\int\int\int_E f(rcos\theta, rsin\theta, z) rdzdrd\theta\)

\(\int\int\int_E f(\rho sin\phi cos\theta, \rho sin\phi sin\theta, \rho cos\phi) \rho^2sin(\phi)d\rho d\phi d\theta)\)

\( \int_{C}F(x,y)\cdot dr=\int_C F(x(t), y(t))\cdot r'(t)dt\)

\( \int\int_{S}f(x,y,z)dS=\int\int_{D}f(x,y,z)\sqrt{1+g_x^2+g_y^2}dA\)


(upward orientation or normal changes sign)
\( \int\int_{S}F(x,y,z)\cdot dS=\int\int_{D}F(x,y,z) \cdot \langle -g_x, -g_y, 1\rangle dA\)
(simple surface)
\( \int\int_{S}F(x,y,z)\cdot dS=\int\int_{D}F(x,y,z) \cdot ndA\)

else S is \(r(u,v)\)

\( \int\int_{S}f(x,y,z)dS=\int\int_{D}f(r(u,v))|r_u\times r_v|dA\)


\( \int\int_{S}F(x,y,z)\cdot dS=\int\int_{D}F(r(u,v)) \cdot (r_u\times r_v)dA\)

Fundamental Theorem of Line Integral

if \(F=\nabla f\)

\(\int_c F\cdot dr=f(r(b)) - f(r(a))\)

Closed piece-wise line C and
D is area inside (2D)

\(\oint_c F\cdot dr=\int\int_D(Q_x-P_y)dA\)

Deriving Scalar Potential Function \(f\)

Closed piece-wise line C (3D)

\(\oint_c F\cdot dr=\int\int_S curlF dS\)

Closed surface S

\(\int\oint_cF \cdot dS=\int\int\int_EdivFdV\)