Matrix

A and A' are equivalent

A and A' are similar

click to edit

Am×n=T1m×mAm×nSn×n

det(T),det(S)0

m==n, T=S

square matrix

det(A) =0?

No

singular

invertible

Yes

\[det(A^{-1})=1/det(A)\]

vectors in A are linearly independent

\[A_{n \times n}x=\lambda x\]

\[E\lambda\] eigenspace of A: the set of all eigenvectors {x}, eigenvectors associated with different eigenvalues are linearly independent, A and At process the same eigenvalues but not same vectors

the spectrum of A= the set of all eigenvalues ofA

\[p(\lambda) = det(A-\lambda I) = (−1)^n (λ − c1) ^{r _1} · · · (λ − c_k ) ^{r_k}\] characteristic polynomial of A,

\[=0, \lambda\] is an eigenvalue, and the root of the p.

A' is diagnolisable

iff A is a diagonal matrix

\[dim(Im(A'-c_iI_n)) = n-r_i\] \[dim(ker(A'-c_iI_n))=r_i\] ci is a different root.

\[A'= D=S^{-1}AS, S=[e_1,e_2,e_3,...,e_n]\]

Constructing the diagonal form of A' using eigenvectors

applications

differential applications for differential equations.

p(A) =0, cayley-hamilton theorem, useful for find the inverse of a matrix (can be expressessed as a linear combination of its powers)

Vectors

scalar/dot product/inner product\[ u \cdot v =||u|| ||v|| cos \theta = \sum_{i=1}^{n}a_i b_i =a^T b = b^T a\]

Triangular inequality \[ ||x+y|| \leq ||x||+||y||\]

Cauchy-Schwarz inequality\[|x \cdot y| \leq ||x|| ||y|| \]

Parallelogram law\[||x+y|| + ||x-y||=||x||^2+||y||^2\]

\[P^2=P, P_\pi x=p\]

projection matrix, eigenvalues are either 0 or 1, \[P=\frac{bb^T}{||b|||^2 (i.e.b^Tb)}\], b basis bector

normal equation:\[B_{n \times m}^TB\lambda =B^T x\] \[p=B \lambda =B(B^TB)^{-1}B^Tx\]

\[x \cdot y=0 \]

orthogonal

click to edit

orthogonal projection when \[P^T=P\]