Please enable JavaScript.
Coggle requires JavaScript to display documents.
Data Structure & Statistical Procedures (Statistical Procedures …
Data Structure
&
Statistical Procedures
Data collection :silhouettes:
Data Sources :fire:
NightScout CGM Data (AAPS, OAPS and Loop)
Open Humans OpenAPS Data Commons
User-generated Data' Properties
ID
Metadata
Source
Device
Objects
Types
Structured Data
Unstructured Data
Subclasses
Profil (IC/ISF/BR/ Targets)
Category (Insulin profile/TT: category)
Quantitative (Bolus info: insulin amount, carbs amount // TBR: absolute, relative, amount // Insulin Profile: Duration, Peak // Extended Bolus: amount // Temporary Target: Target)
External Physical Activity (Extra HR values)
Level of correlation
Classes
Types
Samples (Endpoint=Startpoint)
Intervals
Subclasses
Category (Bolus info/ TBR/ Insulin Profile/ Extended Bolus/ TT/ Profile switch)
Occurrences (time-series trends)
Correlations (info ID connected to other entries)
Other info (External activity from another sensor)
Pre-loop data?
Questionnaires
WP2
QoL
Diabetes-related complications
Comorbidities
Weight, height? (e.g. to monitor child growth)
WP4
Socioeconomic status
Surveys
(OpenAPS Data Commons)
Data Entries
Technological data
Demographic data
Medical data
Diabetes Management data
Scales & Inventories
Patient stratification
Age-ranged:
Children (8-12)
Teenagers (13-18)
Parents
Statistical Procedures :tada:
Methodologies :black_flag:
1.- Descriptive and Exploratory Analytics
Diabetes-related dimensions
1.- Environment
2.- Economics
3.- Safety
4.- Nature
5.- Infracstructure
6.- Endocrine disruptions
7.- Education
8.- Policy
9.- Diet
10.- Activity
2.- Inferential and Predictive Analytics (Modeling data)
:star:
Machine Learning models
Usage
Variable importances
(variables for predicting better app decisions and diabetes coaching)
Pattern classification
(target data, patient stratification)
Trends in time-series
(individual help for diabetes coaching and education)
Which ones do what on Diabetes Research?
Paper: Artificial Intelligence Methodologies
and Their Application to Diabetes
More info on that:
https://www.jmir.org/2018/5/e10775/pdf
others...
Decision Trees, Naïve Bayes or K-Nearest Neighbor
ANNs
Hypoglycaemia detection
Glucose Prediction
SVMs
Diagnosis of Diabetes
GA
Estimation of Model Parameters
Foot Ulcers Risk
Glucose Prediction
Bone Mineral Density Prediction
GA Diabetes Retinopathy Detection
Recommender Systems (Unsupervised Learning)
Daily-life support system
EA: evolutionary algorithm.
RA: regression algorithm
DT, ANN
Pattern recognition
RF
NLP
DT
Adverse glycemic events
Data types
a.- Retrospective data (CGM, Questionnaires, Scales, and Surveys)
b.- Real-time data (CGM and additional data if applicable)
Levels of measurements
a.- Time-series Data (intervals and samples)
b.- Numeric Data (discrete and continuous)
c.- Categorical Data (clusters and patterns on targeted data)