508. Dispositivos de protección contra sobrecargas en las redes eléctricas
1. SOBRECORRIENTES
1.1 CONCEPTO: Protección de redes de distribución contra sobrecorrientes
SOBRECARGAS
1.1 CONCEPTO: Producen sobrecorrientes que conllevan a calentamiento de los conductores cuando estas son sostenidas también pueden averiar el aislamiento en el equipo asociado de la subestación. Si el deterioro del aislamiento es severo y progresivo puede producir un arco eléctrico provocando incendio, destruyendo total o parcialmente el equipo involucrado.
Las sobrecargas son producidas por altas transferencias de energía que proporcionan aumentos considerables de corriente y que producen a su vez efectos mecánicos destructivos.
Un sistema de distribución consiste de un alimentador trifásico principal (troncal) protegido por un interruptor de potencia o restaurador tripolar en la subestación, un restaurador central en el alimentador principal y circuitos laterales monofásicos o trifásicos conectados al alimentador principal a través de seccionalizadores o fusibles. Se utilizan cuchillas operadas manual o remotamente para seccionar y conectar por emergencia con alimentadores adyacentes.
1.2 Aislar fallas permanentes
La primera de las funciones del sistema de protección contra sobrecorrientes es aislar fallas permanentes de secciones no falladas del sistema de distribución.
En el sistema de la figura una falla permanente en un circuito lateral puede ser aislada por la fusión de un elemento fusible lateral, o por la operación de un seccionalizador. Sin embargo, si se omite el restaurador central, los seccionalizadores y fusibles, una falla en un lateral deberá ser despejada por la operación del interruptor de potencia o del restaurador en la subestación. Esto podría causar un “apagón” de tipo permanente a todos los consumidores.
1.3 Minimizar el número de fallas permanentes y de salidas
La segunda función del sistema de protección contra sobrecorriente es desenergizar rápidamente fallas transitorias antes de que se presente algún daño serio que pueda causar una falla permanente. Cuando la función se realiza exitosamente, los consumidores experimentan sólo una falta de energía transitoria si el dispositivo que desenergiza la falla, ya sea un restaurador o un interruptor de potencia, es automáticamente restaurado para reenergizar el circuito
1.4 Minimizar el tiempo de localización de fallas
Esta es otra función del sistema de protección contra sobrecorrientes. Por ejemplo, si los circuitos laterales estuvieran sólidamente conectados al alimentador principal y no se instala el restaurador central en el alimentador, una falla permanente en cualquiera de los circuitos laterales o en el alimentador principal obligaría al restaurador o al interruptor de potencia en la subestación a operar y pasar a la posición de “bloqueo” permanente, causando un “apagón” a todos los consumidores
1.5 Prevenir contra daño al equipo
La cuarta función es prevenir contra daño al equipo no fallado (barras conductoras, cables, transformadores,etc.). Todos los elementos del sistema de distribución tienen una curva de daño, de tal forma que si se excede ésta, la vida útil de los elementos se ve considerablemente reducida.
1.6 Minimizar la probabilidad de caída de conducores
La quinta función es minimizar la posibilidad de que el conductor se queme y caiga a tierra debido al arqueo en el punto de falla. Es muy difícil establecer valores de corriente contra tiempo para limitar el daño en los conductores durante fallas de arqueo debido a las múltiples condiciones variables que afectan este hecho. Esto incluye valores de corriente de falla, velocidad y dirección del viento, calibre de conductores y tiempo de despeje de los dispositivos de protección.
1.7 Minimizar las fallas internas de los equipos
Esta función consiste en minimizar la probabilidad de fallas en equipos que están sumergidos en líquidos, tales como transformadores y capacitores. Una falla disruptiva es aquella que causa grandes presiones, fuego, o cantidades excesivas de líquido que son expulsados del interior de los equipos.
Condiciones que debe cumplir el sistema de protección de sobrecorriente.
Seguridad: El sistema debe ser seguro contra operaciones falsas, de tal forma que reenergice el circuito cuando se tenga carga desbalanceada, corrientes de arranque de carga en frío, armónicos, y otros transitorios o condiciones de estado estable que no sean peligrosos para los componentes o causen daños mortales a personas.
Sensitividad: El sistema debe tener suficiente sensitividad, de manera que pueda realizar sus funciones. Por ejemplo, el interruptor de potencia o el restaurador en la subestación debe detectar fallas transitorias o permanentes al final del alimentador principal y prevenir la fusión de los fusibles instalados en los más remotos ramales debido a fallas transitorias en los mismos.
Selectividad: El sistema debe estar selectivamente coordinado, de manera que el dispositivo de protección más cercano a una falla permanente debe ser el que la despeje. Si dos o más dispositivos de protección se encuentran en serie, sólo el dispositivo que se encuentre más cercano a la falla debe operar en una falla permanente.
EQUIPOS CONTRA SOBRECARGA
Los fusibles o cortacircuitos, no son más que una sección de hilo más fino que los conductores normales, colocado en la entrada del circuito a proteger, para que al aumentar la corriente, debido a un cortocircuito, sea la parte que mas se caliente, y por tanto la primera en fundirse. Una vez interrumpida la corriente, el resto del circuito ya no sufre daño alguno. Los fusibles son los dispositivos de sobrecorriente más baratos y simples que se utilizan en la protección de redes de distribución. Al mismo tiempo son uno de los más confiables, dado que pueden brindar protección un tiempo muy prolongado (por arriba de 20 años) sin estar sujeto a tareas de mantenimiento.
Relé de intensidad: El aparato actúa cuando la corriente que circula sobrepasa la corriente nominal. El relé de sobreintensidad no retrasado tiene el mismo funcionamiento pero tiene un contacto auxiliar.
El relé temporizado de sobre intensidad térmico: este tipo de relé actúa al cabo de unos segundos de producirse la sobrecarga, disminuyendo el tiempo de disparo fuertemente al aumentar la intensidad.
Relé diferencial: Tiene la misión de detectar la corriente de defecto de una línea por comparación de las corrientes en sus dos extremos captadas por medio de transformadores de intensidad. Cuando la comparación de corrientes se hace de dos líneas en paralelo, se llama relé diferencial transversal.
DIEGO BENITES
SRDE-22