Sea V un espacio vectorial sobre R (respectivamente C).
Un producto interno sobre V es una función Φ : V × V → R (respectivamente C) que cumple:
i) Para cada α ∈ R (respectivamente C), y v, w, z ∈ V
• Φ(v + w, z) = Φ(v, z) + Φ(w, z)
• Φ(α.v, z) = α. Φ(v, z)
ii) Φ(v, w) = Φ(w, v) ∀ v, w ∈ V .
(Notar que esta condición implica que para cada v ∈ V , Φ(v, v) = Φ(v, v), es decir que Φ(v, v) ∈ R.)
iii) Φ(v, v) > 0 si v 6= 0.