06 Circular Motion 🎡

Quantities

Velocity

Angular Displacement

Centripetal Force

θ=sr

dropped image link

\(\theta\) is in radians

Angular Velocity

\(\omega=\frac{\theta}{t}\)

Tangential Velocity

\(v=\frac{s}{t}\)

\(v=\frac{r\theta}{t}\)

\(v=r\omega\)

On Earth 🌏

Outside Earth 🌠

Roller Coaster 🎢

String

*Normal force

*Tensional Force

At the TOP

At the TOP

\(F_c=N+W\)

At the BOTTOM

\(F_c=N-W\)

\(v_{tmin}\)

Occurs when \(N=0\)

\(F_c>W\)

\(\frac{mv^2}{r}>mg\)

\(v_{min}>\sqrt{gr}\)

\(v_{bmin}\)

\(KE_b \rightarrow GPE + KE_t\)

\(\frac{1}{2}mv^2=mg2r+\frac{1}{2}mv_{tmin}^2\)

\(v^2=4gr+gr\)

\(v=\sqrt{5gr}\)

\(F_c=T+W\)

dropped image link

At the BOTTOM

\(v_{tmin}\)

Occurs when \(T=0\)

\(F_c=T-W\)

Orbital Velocity

\(F_c=F_g\)

\(\frac{mv^2}{r}=\frac{GMm}{r^2}\)

\(v=\sqrt{\frac{GM}{r}}\)

R.I. (radially inward)

Questions

Nov 15 Q2

Nov 17 Q2a, b

\(F_c=W\)

\(\frac{mv^2}{r}=mg\)

\(v_{min}=\sqrt{gr}\)

\(v_{bmin}\)

\(KE_{bot}=KE_{top}+GPE\)

\(\frac{1}{2}mv^2=mg(2r)+\frac{1}{2}mgr\)

\(v^2=4gr+gr\)

\(v=\sqrt{5gr}\)