04 Wave Phenomena ๐ŸŒŠ

Simple Harmonic Motion

Polarisation

1โƒฃ Acceleration = -Displacement
2โƒฃ Acceleration โˆ Displacement

Questions

May 2016 Q4

Nov 2015

Longtitudinal

Direction of wave propagation is parallel to the force causing it

May 2017 Q7e

Nov 2017

Q3 (SHM)

Q8 Pt 2

Questions

Nov 15 Q6 Pt 2

Q2f (SHM)

Q5a (Light)

Nov 2018

Q4 (pipe)

due to restoring force that

  • always acts towards centre
  • proportional to displacement

Mass-Spring

Simple Pendulum

Force ๐Ÿ”จ
\(kx\)

Force ๐Ÿ”จ
\(mg\sin\theta\)

Acceleration ๐Ÿ

\(ma=-kx\)

Acceleration ๐Ÿ

\(ma=-mg\sin\theta\)

\(a=-\frac{k}{m}x\)

\(a=-g\sin\frac{x}{L}\)

\(a=-\omega^2x\)

Period โฑ

\(\omega^2=\frac{k}{m}\)

\(\omega=\sqrt{\frac{k}{m}}\)

\(T=\frac{2\pi}{\omega}\)

\(\theta=\frac{x}{L}\)

Period โฑ

\(\omega^2=\frac{g}{L}\)

\(a=-\frac{g}{L}x\)

only proportional if \(\sin\theta=\theta\)

\(\omega=\sqrt{\frac{g}{L}}\)

\(T=\frac{2\pi}{\omega}\)

Energy

  • \(x=x_0\cos(\omega t)\)
  • \(v=-\omega x_0\sin(\omega t)\)
  • \(a=-\omega^2 x_0\cos(\omega t)=-\omega^2x\)
  • \(x=x_0\sin(\omega t)\)
  • \(v=\omega x_0\cos(\omega t)\)
  • \(a=-\omega^2x_0\sin(\omega t)=-\omega^2x\)

Kinetic Energy
\(\frac{1}{2}mv^2\)

Total Energy

\(\frac{1}{2}m(-\omega x_0\sin(\omega t))^2\)

\(\frac{1}{2}m\omega^2x_0^2\sin^2(\omega t)\)

Equivalent to
max KE

\(\frac{1}{2}m\omega^2x_0^2\)

Potential Energy

\(\frac{1}{2}m\omega^2x_0^2-\frac{1}{2}m\omega^2x_0^2\sin^2(\omega t)\)

\(\frac{1}{2}m\omega^2x_0^2(1-\sin^2(\omega t))\)

\(\frac{1}{2}m\omega^2x^2\)

Phase Difference

Travelling wave

click to edit

Standing Waves

Boundary
Conditions

Pipe closed
at one end

Refraction

Refractive
Index \(n\)

Light travels fastest in a vacuum

\(n_{m}=\frac{c}{c_m}\)

Angle of Incidence
or Refraction

  • \(n\) is 1โƒฃ for vaccum
  • \(n\) is MORE than 1โƒฃ for optically denser materials

Snell's Law


\(\frac{\sin\theta_1}{\sin\theta_2}=\frac{n_2}{n_1}=\frac{v_1}{v_2}\)

DENSE โžก less dense

less dense โžก DENSE

Refractive Index
small \(n\) โžก BIG \(n\)

Wave Speed
Fast ๐ŸŽ โžก slow ๐ŸŒ

  • Decrease in speed
  • Increase in refractive index

Angle is proportional
to wave speed
\(\theta\propto v\)

Angle is inversely proportional to refractive index
\(\theta\propto\frac{1}{n}\)

Decrease in \(\theta\)

Refractive Index
BIG \(n\) โžก small \(n\)

Wave Speed
Slow ๐ŸŒ โžก fast ๐ŸŽ

  • Increase in speed
  • Decrease in refractive index

Increase in \(\theta\)

dropped image link

dropped image link

air โ˜

water ๐Ÿ’ง:

water ๐Ÿ’ง:

air โ˜

formed when two identical waves travelling in opposite directions superimpose

dropped image link

dropped image link

\(E=E_0\cos\theta\)

Since \(I=kA^2\)

\(I=k(E_0\cos\theta)^2\)

\(I=k(E_0)^2\cos^2\theta\)

\(I=I_0\cos^2\theta\)

\(\theta\) is angle to
the VERTICAL

dropped image link

Pipe open at both ends

dropped image link

1st harmonic
\(L=\frac{1}{4}\lambda_1\)
\(\lambda_1=4L\)

3rd harmonic
\(L=\frac{3}{4}\lambda_3\)
\(\lambda_3=\frac{4}{3}L\)

nth harmonic
\(\lambda_n=\frac{4L}{n};\)
\(n=1,3,5\dots\)

1st harmonic
\(L=\frac{1}{2}\lambda_1\)
\(\lambda_1=2L\)

dropped image link

2nd harmonic
\(L=\lambda_2\)
\(\lambda_2=L\)

nth harmonic
\(\lambda_n=\frac{2L}{n}\)
\(n=1,2,3,4,5\dots\)

dropped image link

node

antinode

\(\frac{shift}{period}\times 360ยบ\)

Standing wave

  • Points in same half wavelength IN PHASE
  • Points in adjacent half wavelengths ANTIPHASE