Physic C E&M

Electric

Fields

Field of charge line segement

Gauss Law

Φ=EA=Qenclosedϵ0

Electric Potential Energy

\(U=-Fd=-Eqd\)

For two point charge

\[U=\frac{1}{4\pi\epsilon_0}\frac{q_{1}q_{2}}{r}\]

Electric Potential

\[V=\frac{U}{q}\]

Point Charge

\[\begin{aligned} V&=\frac{1}{4\pi\epsilon_0} \int\frac{dq}{r}\\ &=\frac{1}{4\pi\epsilon_0}\frac{Q}{\sqrt{x^2+a^2}} \end{aligned}\]

Electric Potential Surface

surface that has the same Electric Potential

Gradient

\[\begin{aligned} \vec{\nabla}f &=(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z})\\ \vec{E} &=-\vec{\nabla}V\\ \to E_r &=-\frac{\partial V}{\partial r}(radial\ electric\ field) \end{aligned}\]

Potential Gradient

\[\begin{aligned} dV&=\vec{E}*d\vec{l}=E_xdx+E_ydy+E_zdz\\ E_x&=-\frac{\partial V}{\partial x}\\ E_y&=-\frac{\partial V}{\partial y}\\ E_z&=-\frac{\partial V}{\partial z}\\ \end{aligned}\]

Circuit

Capacitor and Capacity

two conductor separated by an insulator (vacuum) from a capacitor

how much charge stored per unit volt

\[\begin{aligned} C&=\frac{Q}{V_{ab}} \to definition\ of\ capacitance\\ &=\epsilon_0\frac{A}{d} (for\ parallel)\\ &=\epsilon_0\frac{4\pi r_Ar_B}{r_B-r_A} (for\ sphere) \end{aligned}\]

\[\begin{aligned} 1F=1farad=\frac{C}{V}=1 coulomb/volt \end{aligned}\]

In Series

\[\begin{aligned} \frac{1}{C_{all}}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}... \end{aligned}\]

In Parallel

\[\begin{aligned} C_{all}=C_1+C_2+C_3... \end{aligned}\]

Energy Store

\[\begin{aligned} U=\frac{Q^2}{2C}=0.5CV^2=0.5QV\\ \end{aligned}\]

Magnesium

Dielectric

\[\begin{aligned} \kappa=\frac{C}{C_0}=\frac{V_0}{V}=\frac{E_0}{E} \end{aligned}\]

Energy Density

\[\begin{aligned} u=\frac{0.5CV^2}{Ad}=\frac{1}{2}\epsilon_0E^2 \end{aligned}\]

Kirchhoff's Rule

Junction Rule

The algebraic sum of the currents into any junction is zero

\[\begin{aligned} \sum I=0 \end{aligned}\]

loop rule

the algebraic sum of the potential differences in any loop, including those associated with EMFs and those of resistive elements, must equal zero

\[\begin{aligned} \sum V=0 \end{aligned}\]

EMFs and Resistors is in opposite direction

R-C Circuit

\[\begin{aligned} \epsilon-v_{ab}-v_{bc}&=0\\ Q_f&=C\epsilon\\ \to Q_f\ does\ not&\ depend\ on\ R\\ i=\frac{dq}{dt}&=\frac{\epsilon}{R}-\frac{q}{RC}=-\frac{1}{RC}(q-C\epsilon)\\ \frac{dq}{q-C\epsilon}&=\frac{dt}{RC}\\\\ q&=Q_f(1-e^{-t/RC}) \end{aligned}\]

Magnetic Force

Moving Charge

\[F=qv\times B=|q|vBsin(\phi)\]

Direction

Left Hand Rule

always perpendicular to the Magnetic field and the direction of the charge

Unit

\[1N/C*(m/s)=1N/A*m=1tesla=1T=1*10^4 G(gauss)\]

Magnetic Flux

\[\begin{aligned} \int \vec{B}*d\vec{A}=0 \end{aligned}\]

Current-Carrying Conductor

\[\begin{aligned} \vec{F} &=q\vec{v}_d\times \vec{B}\\ &=(nAl)(qv_dB)=(nq v_dA)(lB)\\ \to&=IlB\ \ \ \vec{F}=I*\vec{l}\times\vec{B} \end{aligned}\]

Hall Effect

Hall effect

\[\begin{aligned} qE_z+qv_dB_y=0\ \&&\ J_x=nqv_d\\ \to E=&-v_dB_y\\ nq=\frac{-J_xB_y}{E_z}\ \end{aligned}\]

Between Parallel Conductors

同种电流相互吸引,异种电流相互排斥

Magnetic Field

Straight Current-Carrying Conductor

\[\begin{aligned} B=\frac{\mu_0I}{4\pi}\int^a_{-a}\frac{xdy}{(x^2+y^2)^{3/2}}= \frac{\mu_0I}{2\pi}\frac{a}{x \sqrt{a^2 + x^2}}\\ a==\infty\to B=\frac{\mu_0I}{2\pi x} \end{aligned}\]

Ampere's Law

The magnetic field in space around an electric current is proportional to the electric current which serves as its source

\[\oint Bdl=\mu_0I\]

Magnetic Field of a Circular Current Loop

\[\begin{aligned} B_x &=\frac{\mu_0 N I a^2}{2(x^2+a^2)^{3/2}}\\\\ B_x &=\frac{\mu_0 NI}{2a} (center) \end{aligned}\]

Electro-Magnetic Induction

Faraday's Law

\[\epsilon=-\frac{d\Phi_E}{dt}\]

Lenz's Law

The induced EMF resulting from a changing magnetic flux has a polarity that leads to an induced current whose direction is such that the induced magnetic field opposes he original flux change.

Motional Electromotive Force

Disk

5c9f0d1896fb8

\[ \epsilon=\int\limits^R_0 \omega Brdr=\frac{1}{2}\omega BR^2 \]

Induced Electric Field

\[\begin{aligned} \Phi_B&=BA=\mu_0 nIA\\ \epsilon&=-\frac{d\Phi_B}{dt}=-\mu_0 nA\frac{dI}{dt}\\ \oint{\vec{E}}*d\vec{l}&=\epsilon=-\frac{d\Phi_B}{dt}\\ \end{aligned}\]

Mutual Inductance

\[\begin{aligned} \because&\ \begin{vmatrix} \epsilon_2=-M\frac{di_1}{dt} \\ \epsilon_1=-M\frac{di_2}{dt} \end{vmatrix}\\ M &=\frac{N_2\Phi_{B2}}{i_1}=\frac{N_1\Phi_{B1}}{i_2} \end{aligned}\]

Self-Inductance

\[\begin{aligned} L &=\frac{N\Phi_B}{i}\\ N\frac{d\Phi_B}{dt}&=L\frac{di}{dt}\\ \epsilon&=-Nd\Phi_B/dt\\ &=-L\frac{di}{dt} \end{aligned}\]

R-L Circuit

\[\begin{aligned} \left(\frac{di}{dt}\right)_{initial}&=\frac{\epsilon}{L}-\frac{iR}{L}*0 =\frac{\epsilon}{L} \end{aligned}\]

\[P=\epsilon i=i^2R+Li\frac{di}{dt}\]

\[\begin{aligned} U&=\int I_0 Lidi=0.5LI^2\\ &=U_0e^{-2(R/L)t}\to increase\\ &\frac{1}{2}Li^2=U_0e^{-2Rt/L}\to decrease \end{aligned}\]

\[i=\frac{\epsilon}{R}(1-e^{-Rt/L})\to increase\\i=I_0e^{Rt/L}\to decrease\]

L-C Circuit

\[\begin{aligned} q=Qcos(\omega t+\phi)\\ i=-\omega Qsin(\omega t+\phi)\\ \omega=\sqrt{\frac{1}{LC}} \end{aligned}\]

Displacement Current

\[i_D=\frac{d\Phi_E}{dt}=i_c\]

\[j_D=\epsilon\frac{dE}{dt}\]

complete Ampere's Law

Eddy Current

Current created by the change of partial magnetic flux

Moving Charge

\[B=\frac{\mu_0}{4\pi}\frac{|q|vsin\phi}{r^2}\]

electron

elementary charge

like charge repel, unlike charge attract

Coulomb's Law

\[F_E=\frac{kq_1q_2}{r^2}\]

only negative charge move

\[\vec{E}=\frac{1}{4\pi \epsilon_0}\frac{Q}{x^2}\hat{i}\]

Field of Disk

\[R>> E_x=\frac{\sigma}{2\epsilon_0}\]

close surface's integrate