Please enable JavaScript.
Coggle requires JavaScript to display documents.
Applied Machine Learning (Methods (Decision Tree (Pre-pruning (max_depth…
Applied Machine Learning
Fundamentals
-
-
-
Example Fruits
-
X = fruits[['mass'],['width'],['height']]
-
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0)
-
-
lookup_fruit_name = dict(zip(fruits.fruit_label.unique(), fruits.fruit_name.unique()))
-
knn.score(X_test, y_test)
fruit_prediction = knn.predict([[20, 4.3, 5.5]])
Methods
-
-
-
-
Decision Tree
-
-
-
DecisionTreeClassifier().fit(X_train, y_train)
-
-
-
-
-
-
-
Evaluation
Selection
-
-
-
Binary Prediction
-
Confusion Matrix
confusion_matrix(y_test , y_predicted)
Confusion Matrix
-
-
-
-
-
-
-
classification_report(y_test, y_predicted)
-
-
Multi-Class Evaluation
-
-
classification_report(y_test , y_predicted)
-
-
-
-
-
Other Methods
-
-
-
Neural Networks
-
-
MLPClassifier(hidden_layer_sizes = [nb_layer1, nb_layer2], activation ='tanh', alpha = value1, solver='lbfgs',random_state = 0).fit(X_train, y_train)
-
-
MLPRegressor(hidden_layer_sizes = [100,100],activation = thisactivation,alpha = thisalpha,solver = 'lbfgs').fit(X_train, y_train)
-
Unsupervised
-
-
Clustering
-
-
DBSCAN
-
DBSCAN(eps = 2, min_samples = 2)
-
-