For a lattice with displacement vector \(\textbf{u}_{l,m,n}=x_{l,m,n}\textbf{x}+y_{l,m,n}\textbf{y}+z_{l,m,n}\textbf{z}\)
\[\phi_x =\frac{\kappa}{2}(x_{l-1,m,n}-x_{l,m,n})^2
\\ \phi_y =\frac{\kappa}{2}(y_{l,m-1,n}-x_{l,m,n})^2
\\ \phi_z =\frac{\kappa}{2}(z_{l,m,n-1}-x_{l,m,n})^2
\\ \Phi_T = \Phi_{eq}+\sum_{l,m,n}(\phi_x+\phi_y+\phi_z)
\]
Equation of motion
\[\mathbf{F}_{l,m,n}=-\pmb{\nabla}\Phi_T =m\ddot{x}_{l,m,n}\]
This may be split componentwise for diatomic chains
For a wavevector \(\mathbf{k}=(k_x,k_y,k_z)\) with \(\mathbf{r}=(la,ma,na)\) we use trial function
\[\mathbf{u}_{l,m,n}=A_xe^{i\omega t-i\mathbf{k}\cdot\mathbf{r}}\mathbf{\hat{x}}+A_ye^{i\omega t-i\mathbf{k}\cdot\mathbf{r}}\mathbf{\hat{y}}+A_ze^{i\omega t-i\mathbf{k}\cdot\mathbf{r}}\mathbf{\hat{z}}\]
Equate \(-m\omega ^2A_xe^{(...)}\) with \(\mathbf{F}_{l,m,n} \) using the trial functions
Construct matrices, identify eigenvalues/eigenvectors and solve for \(\omega\)
-
-
NOTE for diatomic chains, final \(\omega\) may be left in a complicated root form; no further simplification needed