Please enable JavaScript.
Coggle requires JavaScript to display documents.
Artificial
Neural Network (Back-Propagation
Network (Steps (1. Forward
…
Artificial
Neural Network
-
-
Back-Propagation
Network
A supervised learning algorithm, for training Multi-layer Perceptrons
-
Steps
-
2. Backward
Propagation
-
Output Layer
\( \Delta w_{j,k} = I_k [f(net_{j,k})(1-f(net_{j,k}))] (T_k - O_k) \)
- j = source hidden node
- k = output node
Hidden Layer
\( \Delta w_{i,j} = I_k [f(net_{i,j})(1-f(net_{i,j}))] C_j \)
\( C = \sum_k w_{j,k} [f(net_{j,k})(1-f(net_{j,k})] (T_k - O_k) \)
- i = source hidden node
- j = dest hidden node
- k = output node
-
-
-