Please enable JavaScript.
Coggle requires JavaScript to display documents.
TRANSFORMACIONES LINEALES image - Coggle Diagram
TRANSFORMACIONES LINEALES
DEFINICIÓN
T es transformación lineal, porque da igual sumar dos vectores y después rotarlos, que primero rotar los dos vectores y después sumarlos; y da lo mismo multiplicar un vector por un escalar y después rotarlo, que primero rotar el vector y después multiplicarlo por el escalar.
NÚCLEO E IMAGEN DE UNA TRANSFORMACIÓN LINEAL.
Teorema 1
Sea T: V S W una transformación lineal. Entonces para todos los vectores u, v, v1,
v2, . . . , vn en V y todos los escalares a1, a2, . . . , an:
i. T(0) = 0
ii. T(u - v) = Tu - Tv
iii. T(a1v1 + a2v2 +. . .+ anvn) = a1Tv1 + a2Tv2 +. . .+ anTvn
Teorema 2
Sea V un espacio vectorial de dimensión finita con base B = {v1, v2, . . . , vn}. Sean w1,
w2, . . . , wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V
en W tales que T1vi = T2vi = wi para i = 1, 2, . . . , n. Entonces para cualquier vector v ∈
V, T1v = T2v; es decir T1 = T2.
Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces
i . El núcleo de T, denotado por un, está dado por
ii. La imagen de T, denotado por Im T, esta dado por
Teorema 3
Si T:V W es una transformación lineal, entonces
i.Un T es un subespacio de V.
ii.Im T es un subespacio de W.
DEMOSTRACIÓN
i.Sean u y v en un T; Entonces T(u + v) = Tu + Tv =0 + 0 =0 y T( ) = = 0 = 0 de forma que u + v y ∝u están en un T.
ii. Sean w y x en Im T. Entonces w = Tu y x = Tv para dos vestores u y v en V. Esto significa que T(u + v)= Tu + Tv = w + x y T(∝u) = ∝Tu =∝w. Por lo tanto, w + x y ∝w están en Im T.
Ejemplo
Núcleo e imagen de la transformación cero
Sea Tv = 0 para todo vϵ V(T es la transformación cero). Entonces un T = v e Im T = {0}.
REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN LINEA.
Toda matriz A de define una transformación lineal de en . ... AT es la matriz cuyas columnas son los vectores . La matriz AT se llama matriz de transformación de T o representación matricial de T.
DEMOSTRACIÓN
Sea w1 = Te1,w2 = Te2,….,wn = Ten. Sea AT la matriz cuyas columnas son w1, w2,…., wn y hagamos que AT denote también ala transformación de Rn-Rm, que multiplica un vector en Rn por AT. si
De esta forma, ATei = wi para i = 1,2,….n., T y la transformación AT son las mismas porque coinciden en los vectores básicos.
Ahora se puede demostrar que AT es única. Suponga que Tx = ATx y que Tx = BTx para todo x ϵ Rn. Entonces ATx = BTx, o estableciendo CT= AT – BT, se tiene que CTx = 0 para todo x ϵ Rn. En particular, CTei es la columna i de CT. Así, cada una de las n columnas de CT es el m-vector cero, la matriz cero de m*n. Esto muestra que AT = BT y el teorema queda demostrado.
APLICACIÓN DE LAS TRANSFORMACIONES LINEALES: REFLEXIÓN, DILATACIÓN ,
CONTRACCIÓN Y ROTACIÓN.
Graficar un conjunto de puntos en otro es lo que se conoce como transformación lineal de un conjunto de puntos. Existen ciertas propiedades básicas de las transformaciones lineales, las cuales si son tomadas en cuenta y aplicadas al momento de resolver un problema, pueden reducirlo un problema simple. La notación general utilizada para una transformación lineal es T: Rn à Rm.
REFLEXIÓN.
Cuando un conjunto de puntos dados es graficado desde el espacio euclidiano de entrada a otro de manera tal que este es isométrico al espacio euclidiano de entrada, llamamos a la operación realizada la reflexión del conjunto de puntos dado. Esto puede realizarse también con respecto a la matriz, en tal situación la matriz de salida es llamada la matriz de reflexión. La reflexión es realizada siempre con respecto a uno de los ejes, sea el eje x o el eje y. Esto es como producir la imagen espejo de la matriz actual.
CONTRACCIÓN.
La contracción es el procedimiento inverso de la expansión. Aquí el punto es contraído en un determinado grado hacia una dirección dada. Sea el punto de entrada (4, 8) y este debe ser contraído para el grado dos en la dirección de x entonces el nuevo punto resulta ser (2, 8).
ROTACIÓN.
El término rotación tiene dos significados, ya la rotación de un objeto puede ser realizada con respecto al eje dado o al eje mismo. La rotación se realiza para un cierto grado el cual es expresado en forma de un ángulo. Asimismo, la rotación puede realizarse en la dirección de las manecillas del reloj, o inverso a las manecillas del reloj.
DILATACIÓN.
Una dilatación es una transformación que incrementa distancias.
Sea V= (2 4) encontrara la expansión vertical cuando K=2
Expansión horizontal (k71) o contracción (0<k<1)
Expansión vertical (k71) o contracción (0<k<1)