2-->
~drop label column Nan rows
~from sklearn.impute import SimpleImputer
~from sklearn.compose import ColumnTransformer
~cat_imputer = SimpleImputer(strategy="constant", fill_value="missing")
num_imputer = SimpleImputer(strategy="mean")
//Fill categorical values with 'missing' & numerical with mean
~categorical_features = ["Make", "Colour"]
numerical_feature = ["Odometer (KM)"]
//Define different column features
~imputer = ColumnTransformer([("cat_imputer", cat_imputer, categorical_features),
("num_imputer", num_imputer, numerical_feature)])
//Fill train and test values separately
~filled_X_train = imputer.fit_transform(X_train)
~filled_X_test = imputer.transform(X_test)