Data Modelling

Types of Data

probability Distributions

RV

click to edit

CRV

Models

Bernoulli

Poisson

Binomial

Uniform

Gaussian

Discrete

Continuous

click to edit

Discrete RV

Sampling

When do we use Probability distributions?

when the Random Variables take continuous data

Taking multiple samples from the population with each an equal sample size

vector y=(y1...yn)

p(y|parm)

Parameter represents the general usage of parameters to control the probability distribution

represents the l

Estimators

Estimators estimating the parameter of a distribution at the population level

Different types of estimators

unbiased estimator (bias=0)

Bias and Variance of an estimator

General method of estimation

Maximum Likelihood estimation arg param max{p(y|param)

solve equivalent problem of minimising the neg log lkelihood

derive in terms of param

dL(y|param)/dparm=0 solve for parm

Estimation

Point estimation

Interval estimation

one METHOD of interval estimation= conf interval

Regression

Interpreting the intercepts

Rss

R^2

LS estimates

Logistic Regression

Classification

Sensitivity

Specificty

CA

Good predictor?

Decesion Tree

Supervised learning

Usupervised learning

Expected value

Variance

Sd

independent RV

iid