click to edit

click to edit

click to edit

operator

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

Shift

et+u[n]= u[n+1]etu[n]= u[n1]

\[ \delta_{t-} \delta_{x x} \ = \ \frac{1}{2 \ \Delta t \ \Delta x^2} \left( e_{t+}^2 - 4 e_{t+} + 6 - 4 e_{t-} + e_{t-}^2 \right) \ \approx \ \frac{d^4}{dt^4} \]

\[ \left. \begin{align} \delta_{t+} &:= \frac{1}{\Delta t}\ \left( e_{t+}-1 \right) \\ \\ \delta_{t-} &:= \frac{1}{\Delta t}\ \left( 1-e_{t-} \right) \\ \\ \delta_{t} &:= \frac{1}{2 \ \Delta t}\ \left( e_{t+}-e_{t-} \right) \end{align} \right\} \ \approx \ \frac{d}{dt} \]

\[ \left. \begin{align} \mu_{t+} &:= \frac{1}{2}\ \left( e_{t+}+1 \right) \\ \\ \mu_{t-} &:= \frac{1}{2}\ \left( 1+e_{t-} \right) \\ \\ \mu_{t} &:= \frac{1}{2}\ \left( e_{t+}+e_{t-} \right) \end{align} \right\} \ \approx \ 1 \]

Identity

\[ 1 \; u_{\left[ n \right]} = \ u_{\left[ n \right]} \]

\[ \delta_{t t} \ := \ \delta_{t+} \ \delta_{t-} \ = \ \frac{1}{\Delta t^2} \left( e_{t+} - 2 + e_{t-} \right) \ \approx \ \frac{d^2}{dt^2} \]

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

\[ \begin{align} \delta_{t+} \, u_{\left[ n \right]} &= \ \frac{1}{\Delta t}\ \left( u_{\left[ n+1 \right]} - u_{\left[ n \right]} \right) \\ \\ \delta_{t-} \, u_{\left[ n \right]} &= \ \frac{1}{\Delta t}\ \left( u_{\left[ n \right]} - u_{\left[ n-1 \right]} \right) \\ \\ \delta_{t} \; u_{\left[ n \right]} &= \ \frac{1}{2 \Delta t}\ \left( u_{\left[ n+1 \right]} - u_{\left[ n-1 \right]} \right) \end{align} \]

click to edit

click to edit

click to edit

\[ \delta_{t t t t} \ := \ \delta_{t t} \ \delta_{t t} \ = \ \frac{1}{\Delta t^4} \left( e_{t+}^2 - 4 e_{t+} + 6 - 4 e_{t-} + e_{t-}^2 \right) \ \approx \ \frac{d^4}{dt^4} \]

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit

click to edit