click to edit
click to edit
click to edit
operator
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
Shift
et+u[n]= u[n+1]et−u[n]= u[n−1]
\[ \delta_{t-} \delta_{x x} \ = \ \frac{1}{2 \ \Delta t \ \Delta x^2} \left( e_{t+}^2 - 4 e_{t+} + 6 - 4 e_{t-} + e_{t-}^2 \right) \ \approx \ \frac{d^4}{dt^4} \]
\[ \left. \begin{align} \delta_{t+} &:= \frac{1}{\Delta t}\ \left( e_{t+}-1 \right) \\ \\ \delta_{t-} &:= \frac{1}{\Delta t}\ \left( 1-e_{t-} \right) \\ \\ \delta_{t} &:= \frac{1}{2 \ \Delta t}\ \left( e_{t+}-e_{t-} \right) \end{align} \right\} \ \approx \ \frac{d}{dt} \]
\[ \left. \begin{align} \mu_{t+} &:= \frac{1}{2}\ \left( e_{t+}+1 \right) \\ \\ \mu_{t-} &:= \frac{1}{2}\ \left( 1+e_{t-} \right) \\ \\ \mu_{t} &:= \frac{1}{2}\ \left( e_{t+}+e_{t-} \right) \end{align} \right\} \ \approx \ 1 \]
Identity
\[ 1 \; u_{\left[ n \right]} = \ u_{\left[ n \right]} \]
\[ \delta_{t t} \ := \ \delta_{t+} \ \delta_{t-} \ = \ \frac{1}{\Delta t^2} \left( e_{t+} - 2 + e_{t-} \right) \ \approx \ \frac{d^2}{dt^2} \]
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
\[ \begin{align} \delta_{t+} \, u_{\left[ n \right]} &= \ \frac{1}{\Delta t}\ \left( u_{\left[ n+1 \right]} - u_{\left[ n \right]} \right) \\ \\ \delta_{t-} \, u_{\left[ n \right]} &= \ \frac{1}{\Delta t}\ \left( u_{\left[ n \right]} - u_{\left[ n-1 \right]} \right) \\ \\ \delta_{t} \; u_{\left[ n \right]} &= \ \frac{1}{2 \Delta t}\ \left( u_{\left[ n+1 \right]} - u_{\left[ n-1 \right]} \right) \end{align} \]
click to edit
click to edit
click to edit
\[ \delta_{t t t t} \ := \ \delta_{t t} \ \delta_{t t} \ = \ \frac{1}{\Delta t^4} \left( e_{t+}^2 - 4 e_{t+} + 6 - 4 e_{t-} + e_{t-}^2 \right) \ \approx \ \frac{d^4}{dt^4} \]
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit
click to edit