Please enable JavaScript.
Coggle requires JavaScript to display documents.
NLP (:straight_ruler:metrics (:recycle:Multiclass (:two:average=micro (…
NLP
:straight_ruler:metrics
:one:precision
:explode:Number of documents correctly assigned to a category out of the total number of documents predicted
:two:recall
:explode:Number of documents correctly assigned to a category out of the total number of documents in such category
:three:F1
-
:pencil2:\( \text{f1} = 2 * \frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}} \)
:star:An \(F1\) score is considered perfect when it’s \(1\), while the model is a total failure when it’s \(0\).
:recycle:Multiclass
-
-
:two:average=micro
:explode:考虑不同class的sample数量,整个class都一起计算
:icecream:比如precision的micro计算就是对于整个预测的labels里面,不是某个类猜对的概率,而是整个猜对的概率
:three:average=macro
:explode:每个class都很重要,单独计算precision,recall和f1,取算术平均值
-
-
-
-
:banana:语言模型
:apple:评价方法
:explode:评价语言模型和语料库的拟合成程度,用perplexity值刻画
:bread:语言模型会计算出某个位置上各种单词出现的概率,记为p; 所以perplexity=mean(log(p))
:question:p是指一个位置的吗?如果是指一个位置的话,那么这个位置上预测的所有{单词:概率}要怎么计算出一个标量呢?是直接取正确的单词的概率吗
-
-
:green_apple:Named Entities Recognition, NER
-
-