GIS - Urban Perception
Safety in New York
- data collection
Crowd Sourcing from Place Pulse:
http://pulse.media.mit.edu/data/
- Data Cleaning
Filter out the scores in NY
from the raw json file
select a ROI in Manhattan
- Download Images
1705 / 4136 (41.22%) scores in NY
using urllib.request.urlretrieve() to download images
- Extrac Features
- SIFT
- Dense SIFT
- GSIT
python setup.py build_ext -I D:\Downloads\fftw-3.3.5-dll64 -L D:\Downloads\fftw-3.3.5-dll64
Using Anaconda Cmd
- compiling fftw using Lib.exe and copy to VS/Community
- Download pthread.h
- define some bugs
define HAVE_STRUCT_TIMESPEC
define M_PI 3.14159265358979323846
- remove POSIX thread
Crowd Scores
- Generates the Win/Lose labels using the Crowd scores
- Apply to the neural network to Predict the crowd Scores
a. Win or Loss (VGG, AlexNet...)
b. Convert to Scores (Ranking Network)
- Apply to other Cities
- Texton Histogram
- Color Histogram